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INTRODUCTION

Antipredator behavior plays a vital role in predator-prey relation-
ships. When a predator’s attack is imminent, prey lacking special de-
fensive weapons or effective crypsis can only survive by escaping. 
From the proximate viewpoint, the physiological properties of the 
neurons that trigger escape responses have been extensively investi-
gated in arthropods such like locusts and grasshoppers (e.g., Locusta 
migratoria; Simmons and Rind 1992, Hatsopoulos 1995, Gray 2005, 
Schistocerca americana; Gabbiani et al. 2002), flies (Holmqvist and 
Srinivasan 1991, Trimarchi and Schneiderman 1993), cockroaches 
(Fouad et al. 1996), crabs (Medan et al. 2007, Oliva et al. 2007), 
and crayfish (Zucker 1972), as well as vertebrates (Gahtan et al. 
2002, Hale et al. 2002). Among arthropods, the brain and nervous 
system of locusts have features that make them particularly useful 
for studies of the relationship between neuronal responses to visual 
stimuli and escape behaviors (Burrows 1996). Therefore orthoperan 
species such as grasshoppers have been used most often as models 
for electrophysiological studies. Accordingly, we restrict our discussion 
to researches conducted on Orthoptera. Visual cues are important 

for prey because they can provide information allowing predator 
recognition at a relatively safe distance from the approaching pre-
dator. Several decades of neurophysiological studies have demonst-
rated that specific identifiable neurons in the locust visual system 
are tuned to objects approaching on a collision trajectory (e.g. Rind 
and Simmons 1992). These neurons respond to angular size and 
angular velocity (Hatsopoulos et al. 1995) or angular acceleration 
(Rind and Simmons 1992) of the images of approaching objects as 
projected on the retina. The electrophysiological properties of the 
neurons are known so well that they are employed in robotic 
systems (Blanchard et al. 2000, Stafford et al. 2006, Stafford et al. 
2007) designed for avoiding obstacles. 

Visually elicited escapes have also been approached from evo-
lutionary perspective. In this ultimate level of analysis, graphical 
(Ydenberg and Dill 1986) and mathematical (Broom and Ruxton 
2005, Cooper Jr. and Frederick 2007) models of the costs and bene-
fits of escape responses have been used to explain selection factors 
that shape (optimize) prey escape behavior (typically defined as a 
distance between predator and prey at the moment of escape initia-
tion) without considering the underlying properties of sensory and 
neural networks. Only recently, an evolutionary model combining 
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proximate mechanisms, from a very simple computer-generated neu-
ral network, with evolutionary mechanisms has been used to inter-
pret variation in escape behavior among populations (Blumstein et 
al. 2006). Here, we predict further integration between research of 
proximate mechanisms and evolutionary cost/benefit analyses of 
visually-elicited escape behaviors using Orthoptera as examples. We 
restrict this review to electrophysiological research on locust visual 
sensory neurons used in escape behavior and general modeling stu-
dies of the costs and benefits of prey escape responses. 

PROXIMATE LEVEL: 
ELECTROPHYSIOLOGY OF PREDATOR DETECTION  

AND ESCAPE INITIATION IN LOCUSTS

Movement Detecting Neurons in Locusts
Certain visual neurons in locusts have selective sensitivity to 

approaching objects and appear to react to approaching predators 
with timing properties that are adaptively tuned to promote success-
ful escape from a predator. The nervous system of locusts pro-
vides an excellent model system for neurophysiological studies 
because (a) it consists of a relatively small number of neurons, 
(b) the majority of neurons have been identified as to function, 
and have firing patterns that are easy to record and (c) the neu-
ronal response is directly related to insect escape behavior (Bu-
rrows 1996). The most widely studied locust visual neurons 
involved in triggering insect escape responses are: the lobula 
giant movement detector or “LGMD” (O’Shea and Williams 1974) 
and the descending contralateral movement detector or “DCMD” 
(Rowell 1971). The LGMD has fan-shaped dendrites and is a 
point of convergence for retinotopic inputs (O’Shea and Rowell 
1976). The postsynaptic connection of the LGMD with the fast- 
conducting DCMD has the largest diameter of the contralateral 
nerves. The DCMD has a synapse with other interneurons that 
forward signals to subsequent motor neurons. These motor neu-
rons evoke jumping and flying behavior (Burrows and Rowell 
1973). Intracellular recordings show that the DCMD axon spike 
comes after the LGMD spike 1:1 with constant latency, which 
implies highly correlated properties of both neurons. These em-
pirical data indicate that the LGMD/DCMD neurons function as 
transducing processors in the nervous system of locusts. These 
neurons are involved in converting visual signals to motor ac-
tions so that visual stimuli from approaching predators can evoke 
escape behavior at an appropriate moment. Because the LGMD/ 
DCMD pathway is believed to be an important component of the 
escape-triggering pathway, the physiological characteristics of 
these neurons establish a basis for understanding the mechanisms 
by which escape behaviors are triggered.

Fine-Tuning to Approaching Objects
Previous studies verified that (a) the DCMD tends to react to 

approaching objects rather than retrograde or translating figures (Rind 
and Simmons 1992), (b) the “critical cues” for the DCMD are an in-
crease in the size of edge and a consistent increase in edge velocity 
(Simmons and Rind 1992), and (c) the neuronal activity can be eli-
cited by multiplying the velocity and the size of an object’s image 
projected onto the retina (Gabbiani et al. 2002, Hatsopoulos et al. 
1995) although some of the details are disputed (Gabbiani et al. 
1999, Rind and Santer 2004). Gabbiani et al. (2002) claimed that 
the mathematical product of an exponential function of the size and 
the velocity of the image predicts the peak spiking frequency. This 
peak was predicted to occur before the expected moment of colli-
sion between the object and the locust. Therefore, they proposed that 
the peak can be used by locusts to anticipate collision and to trigger 
the escape. However, Rind and Simmons (1992, 1999) asserted that 
the angular acceleration of objects is closely associated with the 
spiking frequency and their simulation model suggests that the peak 
often occurs after the expected time of collision with an object (Rind 
and Simmons 1999). They argue that peak therefore cannot be the 
signal triggering the escape. Instead, they proposed that a threshold 
value of the spiking frequency, corresponding to the threshold value 
of the angular speed of expansion of an object image on the lo-
cust’s retina may trigger the escape. Regardless, the above-mentioned 
visual variables (angular size, angular speed) can be extracted by a 
visual system experiencing the approach of e.g., an avian predator. 
Researchers agree that responses of the neurons are restricted and 
finely tuned to stimuli associated with such approaching objects. 
Therefore, it is reasonable to conclude that this fine-tuning, and 
other properties of the neurons, might be the results of selection for 
effective escape from predators. Hence, the properties of these neu-
rons in prey might have been shaped by the predators, but research 
in this area integrating electrophysiology and evolutionary ecology 
is still in its infancy. 

Neural Network Models at the Proximate Level
Simulations that faithfully mimic the natural neural network used 

in insect escape behavior create stepping stones towards future 
optimality models that may focus on the evolution of such networks 
(and hence the evolution of neural structures in animals). The neural 
network model of the orthopteran escape pathway imitates the elec-
trophysiological properties of the LGMD/DCMD neurons in locusts 
in a collision-detecting neural network (Rind and Bramwell 1996). 
The neurophysiological activity simulated in the model matches the 
activity of the real system in locusts. This model was subsequently 
used by Stafford et al. (2006) to devise a computer-based robotic 
system that was able to perform a variety of tasks such as avoiding 
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approaching objects. The robotic system used the hypothetical thre-
shold mechanism deduced from studies of locust electrophysiology 
to successfully avoid objects on a collision trajectory, which might 
be viewed as equivalent to escaping from predators that are directly 
approaching the prey. All of the results suggested that a good appro-
ximation of realistic collision-avoidance behaviors of animals and 
their underlying mechanisms has been artificially created in research 
laboratories. We propose that evolutionary biologists can exploit the 
situation by adding evolutionary and optimality mechanisms to the 
existing neural networks models based on real systems in order to 
study evolution of escape mechanisms in prey and adaptations of 
predators that trigger escapes. With this idea in mind, we will briefly 
review recent models used to understand the evolution of escape 
behaviors.

ULTIMATE LEVEL: OPTIMALITY MODELS AND  
EVOLUTIONARY SIMULATIONS

The dynamics of predator-prey relationships and the evolutionary 
history of escape responses have been studied for many years (Be-
ddington et al. 1975, Berryman 1992, Yoshida et al. 2003). Optimal 
escape timing or optimal distance to the predator at the moment of 
escape can be found that maximize the benefits to costs ratio for 
the prey (or meet any other criterion). The major costs of escape 
are energy and time used for escape that otherwise might have been 
used for other vital activities such as mating, feeding, parental care, 
etc. Additionally, escape from one predator may make the prey 
visible and susceptible to predation by another type of predator. The 
benefit of escape behavior is, clearly, avoidance of death (due to 
predation) at a success rate that may depend on the  properties of 
the predator and the distance between the prey and the predator at 
the moment of escape initiation. Therefore, the ratio between costs 
and benefits and the optimal escape timing are affected by the 
characteristics of predators and their behavior (e.g., speed, directed-
ness, repetitive representation). Accordingly, Cooper Jr. (2006) found 
that grasshoppers initiate their escapes at a larger “flight initiation 
distance” (the distance from the predator when prey starts to escape 
upon  detection of a predator) in response to a predator approaching 
more directly and at a faster speed. In addition to the costs and 
benefits of escape and their effects on prey fitness, a prey animal’s 
ability to detect a predator in the first place will also play a vital 
role in the evolution of antipredatory behavior. The effects of pre-
dator detection on response behaviors have been illustrated in pre-
vious studies. For example, according to Blumstein (2003), flight 
initiation distance in prey increases with “starting distance”, defined 
as the distance between the prey and the potential predator at the 
moment when the predator first spots the prey. Broom and Ruxton 

(2005) included prey “wariness” and ability to detect predators in 
their evolutionary model of predator strategies (e.g., chasing) and prey 
escape behavior. They found that the optimal escape strategy in 
prey can be affected by characteristics of the predator (e.g., speed, 
detection, success at chasing) and the prey (e.g., costs of escape, 
benefits of escape). Models can also predict optimal escape beha-
viors by including factors known to affect the escape behaviors, 
including variables resulting from the sensory properties of prey 
(“wariness”, “detection ability”). However, such models do not ex-
plicitly include and model evolution of sensory structures and their 
properties in prey. 

Graphical Models
Ydenberg and Dill (1986) first designed a theoretical model that 

distinguished predator detection from the response to predator de-
tection. They predicted that prey would not escape if the benefit of 
remaining in place exceed the costs. Escape behavior prevents prey 
from spending time on other behaviors such as mating, foraging, 
nesting etc. Consequently, frequent escapes are detrimental to prey, 
reducing their chance of successful reproduction (Magnhagen 1991). 
Hence, prey benefit from mechanisms that allow them to only 
initiate the escape response if the predator poses an imminent threat. 
Ydenberg and Dill (1986) focused on this aspect of the escape 
response and developed a simple qualitative model predicting that 
prey will increase their flight distance in response to increased risk 
of capture. This model is supported by empirical data; the distance 
that a prey animal (a grasshopper) flees increases in response to 
increases in the speed or increases in the directness and repeti-
tiveness of approaches by predators (Cooper Jr. 2006).

This model also proposed that flight distances of prey should 
become shorter when the cost of escape increased, and that the 
distance would change when prey animals possess special defensive 
weapons such as venom, thorns, stench, or cryptic body figures. 
The fitness benefits gained from living in groups may also affect 
the distance covered during escape. However, these aspects of the 
graphical model have not yet been quantitatively tested.

Mathematical Models
Broom and Ruxton (2005) designed a mathematical model of 

optimal escape strategies for inconspicuous prey. The underlying 
assumptions of this model are (a) that prey is cryptic to some ex-
tent, (b) that the predator-prey relationship starts at the moment 
when prey detects predator, (c) that unless the prey is discovered, 
the predator does not head towards the prey, regardless of whether 
the prey detects the predator, and (d) that the benefit of escape to 
prey is directly related to its survival. Differences between this 
model and that of Ydenberg and Dill (1986) are summarized in 
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Table 1. Broom and Ruxton’s model concentrates on both the prey 
and the predator and describes escape behavior in detail, including 
interactions between prey and predator such as chasing and ambush. 
The two models make different predictions about the importance of 
costs of escape to the prey. Ydenberg and Dill predict that the cost 
of escape is significant, whereas Broom and Ruxton predict that 
escape happens relatively infrequently and prey may return to 
feeding quickly, leading to minimal costs. Clearly, further empirical 
studies are still required.

Cooper Jr. and Frederick (2007) designed a mathematical version 
of Ydenberg and Dill model (1986) to clarify the predictions of the 
previous model. Their model accentuates the benefits that can be 
maintained even after prey death (e.g., considering contributions to 
inclusive fitness and the fact that external fertilization is not 
associated with the need for parental care in orthopterans). This mo-
del is based on the assumption that prey behave in such a way as 
to maximize their average fitness when facing predators. Thus, the 
model of Cooper Jr. and Frederick (2007) considers the long-term 
effects of escape on prey fitness, rather than focusing on short-term 
and immediate results of predator-prey encounters (Broom and Rux-
ton 2005).

TOWARDS INTEGRATIVE STUDIES

Evolutionary Simulations of Neural Network Models 
The graphical and mathematical models discussed above define 

escape in terms of timing of escape in relation to the approaching 
predator. These models ignored sensory processes in the prey’s 
brain and its sensory and nervous systems. The nervous system is 
treated as a “black box” that produces observable behaviors. It is 
surprising that despite over 40 years of neuroethological and neuro-

Table 1. Comparison of main characteristics in Ydenberg and Dill model (1986) and Broom and Ruxton model (2005)

Ydenberg and Dill (1986) Broom and Ruxton (2005)

Type Graphical (Economic) Mathematical (Optimal)

Cost to prey due to feeling earlier Reduced feeding time Alerting predator

Focus Prey Prey and predator

Cost of escape Significant Relatively variable

Effect of fleeing Prey loses invested food and time Prey quickly returns to feeding

Factors Cost of flight
Risk of capture
Defense tactics of prey
Group size

Cost of flight
Success rate of chase 
Predator speed
Effect of initiating escape 
Probability of detecting predator in advance by prey spotting 

prey by predator

physiological studies on escape systems, there remains a conspi-
cuous absence of optimality analyses of the evolution of the “inte-
rior” of the “black box”, while theoretical analyses of the resulting 
behaviors are well developed. The brain of an animal is a complex 
network of neurons and synapses, all of which are under natural 
selection just like the behaviors resulting from the activities of the 
“black box”. Studies in neuroethology have already proved that a 
nervous system can evolutionarily adapt to a particular lifestyle or 
function (e.g., locust flight systems and escape behavior in crayfish; 
Dumont and Robertson 1986, mate calling in crickets; Fullard and 
Yack 1993, learning in songbirds; Marler 1991, prey location in 
barn owls; Konishi 1986).

Software-based neural networks reflect the biological properties 
of nervous systems and therefore can in principle be applied to si-
mulate evolutionary adaptive changes in biological neural structures 
(biological neural networks). Neural network models employ ma-
thematical formulas and computational algorithms for the purpose 
of understanding the proximal mechanisms of neural processing. 
Only recently, neural network modeling has been employed to ask 
evolutionary questions in the context of predator-prey relationships: 
Blumstein et al. (2006) used a simple artificial neural network and 
a genetic algorithm to devise a virtual environment for prey and 
predators. Genetic algorithms linked with neural network properties 
allows evolution of neural processing during the simulation so that 
the adapted traits of the eprey neural network can be selected and 
inherited using this model. Blumstein et al. investigated the effect 
of the presence of a specific predator on predator recognition abi-
lities in prey. A simple, two-layer neural network was designed to 
mimic prey escape decisions in response to visual images. The 
images represented matrices (n × n pixels) of two different shapes, 
representing two different types of predators. This model is valuable 
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because the evolutionary mechanism linked prey fitness with the 
network’s properties. The model is therefore important for making 
the point that evolutionary changes in neural networks to optimize 
recognition of one predator may interact with the optimization of 
recognition of another type of predator. However, the extreme sim-
plicity of this neural network (i.e., simple two-layer system) that 
was not based on neural structures in real prey makes the model 
predictions not testable with respect to the evolution of neural 
structures in biological organisms. Nevertheless, this model showed 
how, in the future, more realistic neural network models (already 
constructed with proximate questions in mind, such as the model by 
Rind and Bramwell 1996) can be modified to address evolutionary 
questions and to produce predictions testable in biological systems.

Robotics (1)

Naturalistic stimuli in natural habitat

INTEGRATED RESEARCH

PROXIMATE APPROACHES

Electrophysiology (2)

Weaknesses

Non-naturalistic stimuli

Lack of evolutionary perspective

Strengths

Insights into proximate mechanisms
▼

▼

▲

▲

Behavioral Ecology

▼

▼

▲

▲

ULTIMATE APPROACHES

Optimality Models (3) (graphical and mathematical) Evolutionary Simulations of Neural Network Models (4)

Weaknesses Weaknesses

Lack of empirical data
Lack of physiological knowledge

Unrealistic assumptions
Lack of physiological knowledge

Strengths Strengths

Understanding of evolutionary costs and 
benefits of antipredatory behavior

The only work where proximate and 
evolutionary approaches are integrated.

Fig. 1. Schematics of inter-relations between the traditional proximate (1, 2, 4) and ultimate (3) approaches in the study of antipredatory behavioral 
escape responses ("weaknesses" and "strengths" from the point of view of integrative studies of evolutionary processes are listed in each box). 
We propose that the gray areas can be integrated into one research program supplemented by input from robotics science to produce naturalistic 
predator-like stimuli for experimental purposes. The four areas of research are exemplified by papers reviewed in the text; each of four subjects 
directly corresponds to the title of the part in the text.

CONCLUSIONS AND PROSPECTS

The preceding examples of physiological, theoretical, and eco-
logical studies show research across a wide range of topics related 
to predator escape, including investigations of the signal-transmi-
tting mechanisms of risk-sensing neurons, applications of models 
imitating decision-making processes, and reconstructing evolutio-
nary histories of escape behavior. These diverse fields of study have 
not yet been linked to each other and no attempt to fully integrate 
proximate and ultimate approaches has been made. The first step in 
such a study would be to express the behavioral predictions from 
the ultimate level of analysis (e.g., Santer et al. 2005, Cooper Jr. 
2006) in terms of electrophysiology and neural network properties 



Shin, Hong-Sup and Piotr G. Jabłoński J. Ecol. Field Biol. 31 (2)94

in prey (e.g., Broom and Ruxton 2005). This could be done by 
better representation of the proximate level of mechanisms in the 
evolutionary modeling. Biomimetic robot models may be used to 
verify the mechanisms in natural habitats by presenting realistic 
stimuli rather than the oversimplified, simple geometrical stimuli 
used in previous studies. Current developments in robotics have al-
ready generated realistic wing movement of birds (Wu and Popović 
2003). Another promising future research avenue may focus on the 
evolution of predators is shaped by escape neuron properties in 
prey. For instance, Jabłoński and Strausfeld (2000) proposed that 
the neural circuits of insects may result in the evolution of specific 
traits in predators. This can be demonstrated by physiological 
studies of the visual neurons of insects and modeling research that 
employs artificial neural networks and genetic algorithms. The 
integrated approach (Fig. 1) towards escape behavior is a promising 
new direction for studies of predator-prey relationships. 
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