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INTRODUCTION

Among the 2,815 km2 of mudflats in South Korea, 2,393 km2 are 
found on the western and southern coasts of Korea. Mudflats in coastal 
estuaries act as protective filters and final repositories for runoff pollu-
tants (Teal and Howes 2000), pathogens (Grant et al. 2001), and nutrients 
(Howes et al. 1996). They also play a vital role in the development of 
many marine populations and are essential as breeding grounds or 
nursery areas for many species. 

Halophytes in mudflat areas function as primary producers, and their 
roots and stalks stabilize the sediments, preventing erosion. They also 
provide habitats for various organisms and have the ability to remove 
contaminants from ecosystem (Choi and Lee 1996). However, because 
of recent large-scale land reclamation projects, halophyte habitats have 
been reduced rapidly, threatening the functioning of coastal ecosystems. 

Rhizospheres, generally defined as the soil adjacent to and influenced 
by plant roots, are regarded as "hot spots" for microbial colonization 
and activity (Metting 1993). In contrast to bulk soil, where organic car-
bon is available only at low concentrations, rhizospheres are supplied 
with higher concentrations of nutrients generated during plant photo-
synthesis (Duineveld et al. 1998, 2001). 

Rhizosphere microbial communities are mainly determined by the 
plant species (Marshner et al. 2001) and soil characteristics (Degens et 
al. 2000, Gelsomino et al. 1999), and rhizosphere microbial communi-

ties influence plant nutrition, growth, and disease (Assigbetse et al. 
2005). 

Microbiological studies of mudflat environments in Korea have 
mainly investigated microbe distribution (Lee et al. 1996), enzyme acti-
vities (Kim and Lee 1992, Choi and Lee 1996), and diversity (Lee et al. 
2001, Kim et al. 2004, Kim et al. 2005). However, microbial diversity 
on the rhizosphere of halophytes in mudflat environments in Korea was 
also studied recently by Park and Lee (2006). 

In this study, we investigated the R/S ratios, population densities, 
and diversities of bacteria in the rhizosphere of Phragmites communis 
communities on mudflats in western Korea as baseline data for a resto-
ration project for halophyte habitats in Korea. 

MATERIALS AND METHODS  

Sampling and Counting of Bacteria 
Samples of rhizosphere soil (R) and soil remote from roots (S) of 

P. communis were collected from 3 stations on the western coastal 
mudflats of Korea during July and October, 2004 (Fig. 1). Soils were 
collected using a soil auger, stored at 5℃, and processed within a few 
hours of collection. 

The effects of the rhizosphere were measured by calculating at the 
ratio of the number of microorganisms in rhizosphere soil (R) to the 
number of microorganisms in soil remote from roots (S), or the R/S 
ratio. 
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Fig. 1. Map showing the sampling sites in the western mudflats of 
Korea (St. 1: Seocheon, St. 2: Mankyung R., St. 3: Muan bay).

We estimated of population densities following the methods of Paul 
and Clark (1988). To determine R/S ratios and the population densities 
of the aerobic heterotrophic bacteria, one gram of rhizosphere soil and 
one gram of soil remote from roots were suspended in 10-mL sterile 
saline solution (0.85% NaCl), and shaken for 5 min at 100 rpm. Then 
serial decade dilutions were made with sterile saline water and 0.1 mL 
of each was plated on Nutrient agar (Difco) and Marine agar 2216 
(Difco). To determine the number of aerobic physiological groups of 
heterotrophic bacteria, soluble starch (0.2%) for amylolytic bacteria, 
carboxymethyl cellulose (0.5%) for cellulolytic bacteria, or gelatin (0.4%) 
for proteolytic bacteria was added as the sole carbon source to the 
Trytic soy broth (Difco, USA) as the basal culture medium (Wollum 
1982). After incubation at 25 ± 2℃ for 72 hrs, we counted the resul-
ting colonies using the methods of Holding and Collee (1971). Final 
estimated population densities were expressed as log10 colony-forming 
units (CFU) g-1 oven-dried sediment. 

PCR Amplification of 16S rDNA 
We amplified 16S rDNA fragments of isolates from the rhizosphere 

of the halophyte P. communis using PCR with the primers 27F 
(5'-AGAGTTTGATCMTGGCTCAG-3') and 1522R (5'-AAGGAGGT 

GWTCCARCC-3'). The PCR reaction mixture contained 5 μL of 10X 
PCR amplification buffer (final concentration: 50 mM KCl, 0.01% ge-
latin, 10 mM Tris-HCl, pH. 9.0), 4 μL of 2.5 mM MgCl2, 1 μL of 
10 mM dNTP, 1 μL of each 10 pmol oligonucleotide primer, and 1 U 
of Taq polymerase (TaKaRa, Japan) in 50 μL of PCR mixture. DNA 
was amplified with a GeneAmp PCR system 2700 (Applied Biosystems, 
USA) thermal cycler using the following program: initial denaturation 
at 94℃ for 10 min, followed by 30 cycles of denaturation at 94℃ for 
30 sec, annealing at 55℃ for 30 sec, extension at 72℃ for 5 min, and 
a final extension at 72℃ for 7 min. PCR products were either used 
immediately or stored at 4℃ prior to subsequent analyses. Two repli-
cate reactions were run for each sample. 

16S rDNA Sequencing and Phylogenetic Analysis
Ribosomal DNA sequences were determined by the Genotech Com-

pany (Daejon, Korea) using an ABI PRISM 3700 DNA analyzer (Applied 
Biosystem, USA). We then compared the sequences directly to all known 
sequences in the GenBank database using the basic local alignment 
search tool (BLAST)(Altschul et al. 1997), and constructed phyloge-
netic trees with the neighbor-joining (NJ) method using the NEIGHBOR 
program (PLYLIP, version 3.5) (Saitou and Nei 1987). 

RESULTS AND DISCUSSION  

Population Densities of Heterotrophic Bacteria 
Estimated population densities of aerobic heterotrophic bacteria in-

habiting the rhizosphere of P. communis ranged from 3.3 ± 0.9 × 107 

to 1.2 ± 0.5 × 108 cfu g-1 dry weight (d. wt.) during the sampling pe-
riods (Fig. 2). The population densities of aerobic heterotrophic bacteria 
were the highest on the mudflats near Mankyung River, and lower near 
Seocheon and Muan. Although the differences in microbial population 
density among sampling stations were not explored in detail in this 
study, we suspect that bacterial population densities may be influenced 
by fine-scale environmental variables in the soil. 

Previous studies have reported diversity in the microbial populations 
in the rhizospheres of different plants (Neal et al. 1970, 1973). In our 
study the population densities of aerobic heterotrophic bacteria were 
higher in the rhizosphere of P. communis than those reported for the 
Suaeda japonica rhizosphere (Park 2004), but were lower than those in 
the Suaeda maritima and Salicornia herbacea rhizospheres, which 
suggests that rhizosphere microbial communities are mainly determined 
by root exudates, which vary among plant species (Marshner et al. 2001). 
Soil microorganisms have been shown to respond to plant exudates and 
different plant species have different patterns of root exudation (Brime-
combe et al. 2001). 

Heterotrophic bacteria on the mudflats decompose organic matter 
derived from plant litter and transform pollutants (Benoit et al. 2003, 
Smith and Hollibaugh 1993). The population densities of physiological 
groups of heterotrophic bacteria on the roots of P. communis ranged 
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Fig. 2. Population densities of (a) aerobic heterotrophic bacteria, (b) amylolytic heterotrophic bacteria, (c) cellulolytic heterotrophic, and (d)  pro-
teolytic bacteria in the rhizosphere soil and soil remote from roots of the halophyte Phragmites communis from mudflats in western Korea 
in July and October, 2004.

from 1.1 ± 0.2 × 106 to 3.0 ± 1.2 × 106 cfu g-1 d. wt. for amylolytic 
bacteria, from 5.6 ± 2.3 × 106 to 1.5 ± 0.3 × 107 cfu g-1 d. wt. for cellu-
lolytic bacteria, and from 1.4 ± 0.3 × 106 to 3.5 ± 2.3 × 107 cfu g-1 d. 
wt. for proteolytic bacteria (Fig. 2). Population densities were similar 
among the different physiological groups of heterotrophic bacteria. 
However, during the sampling period, bacterial population densities of 
amylolytic and proteolytic bacteria were highest at Mankyung, while 
densities of cellulolytic bacteria were highest and densities of amy-
lolytic bacteria were lowest at Muan. It is likely that the materials 
released by plants into the soil (Atlas and Bartha 1992) had a direct 
influence on the composition and density of the mudflat microbial com-
munity. Accordingly, root exudation is an important ecological pheno-
menon that affects succession in the plant and root microbial commu-
nities (Singh and Mukerji 2006). 

Rhizosphere Effects on Microbial Populations 
The rhizosphere is chemically, physiologically and biologically com-

plex due to the influence of plant roots on various types of microor-
ganisms. The interaction of soil and rhizosphere microbes results in 

stimulation of microorganisms known as the "rhizosphere effect”. 
The R/S ratios in the rhizospheres of P. communis ranged from 2.26 

to 6.89 (Table 1), which are similar to the R/S values reported for 
rhizospheres of other halophytes (Park 2004), but lower than those of 
common terrestrial environments (Gray and Parkinson 1968, Wolden-
dorp 1978). This result suggests that nutrient availability and soil 
texture have an important effect on the growth of rhizosphere bacteria 

Table 1. Ratios of the number of microorganisms in the rhizosphere 
soil (R) to the number of corresponding microorganisms in 
soil remote from roots (S) (R/S ratios) of the halophyte 
Phragmites communis from mudflats in western Korea

Halophyte 
 Station

Phragmites communis
(R/S Ratio)

Seocheon 2.26

Mankyung 6.30

Muan 6.89
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Fig. 3. Phylogenetic tree showing the affiliation of 16S rDNA sequences of heterotrophic bacteria sampled from the rhizosphere of Phragmites 
communis from Seocheon to selected reference sequences. The tree was constructed from a distance matrix by the neighbour-joining 
analysis. The bar represents 0.1% estimated sequence divergence.

Fig. 4. Phylogenetic tree showing the affiliation of 16S rDNA sequences of heterotrophic bacteria sampled from the rhizosphere of Phragmites 
communis from Mankyung to selected reference sequences. The tree was constructed from a distance matrix by the neighbour-joining analysis. 
The bar represents 0.1% estimated sequence divergence.



May 2008 Bacterial Diversity in the Rhizosphere of Phragmites communis 135

Fig. 5. Phylogenetic tree showing the affiliation of 16S rDNA sequences 
of the heterotrophic bacteria on the rhizosphere of Phragmites 
communis sampled from Muan to selected reference sequences.
The tree was constructed from a distance matrix by the neigh-
bour-joining analysis. The bar represents 0.1% estimated sequence 
divergence.

on mudflats, and therefore on R/S values. 

Sequencing and Phylogenetic Analysis 
Bacterial 16S rDNA clones were characterized by partial sequencing 

and phylogenetic analysis. We identified thirteen isolates from the rhi-
zosphere of P. communis from Seocheon: five clones, including Bur-
kholderia spp., Alcaligenes sp., Varovorax sp., and Ralstonia sp., were 
determined to belong to the β-proteobacteria group and four clones, 
including Pseudomonas spp. and Acinetobacter sp. were determined to 
belong to the γ-proteobacteria group (Table 2). Among the twenty-six 
isolates from Mankyung, twelve clones were determined to belong to 
the γ-proteobacteria group, and ten were determined to belong to the 
α-proteobacteria group (Table 2). We identified twelve isolates from 
Muan, six of which were determined to belong to the γ-proteobacteria 

Table 2. List of heterotrophic bacteria isolated by 16S rDNA analysis 
from the rhizosphere of the halophyte Phragmites communis 
from mudflats in western Korea

Site Closet Genebank library Group

Seocheon

Flavobacterium sp. Flavobacteria

Bacillus spp. (2 species) Firmicutes

Varovorax sp. Betaproteobacteria

Psedomonas spp. (3 species) Gammaproteobacteria

Burkholderia spp. (2 species) Betaproteobacteira

Alcaligenes sp. Betaproteobacteira

Ralstonia sp. Betaproteobacteira

Micrococcus sp. Actinobacteria

Acinetobacter sp. Gammaproteobacteira

Mankyung

Cellulomonas sp. Actinobacteria

Sphingomonas sp. Alphaproteobacteira

Aeromonas spp. (2 species) Gammaproteobacteira

Pseudomonas spp. (5 species) Gammaproteobacteira

Streptomyces sp. Actinobacteria

Sphingomonas sp. Alphaproteobacteira

Microbacterium sp. Actinobacteria

Paracoccus spp. (4 species) Alphaproteobacteira

Erythrobacter spp. (2 species) Alphaproteobacteira

Xanthomonas sp. Gammaproteobacteira

Citricella sp. Alphaproteobacteira

Sulfitobacter sp. Alphaproteobacteira

Microbulbifer sp. Actinobacteria

Oceanospirillum sp. Gammaproteobacteira

Shewanella spp. (2 species) Gammaproteobacteira

Acinetoacter sp. Gammaproteobacteira

Muan

Erwinia spp. (4 species) Gammaproteobacteira

Hyphomonas spp. (3 species) Alphaproteobacteira

Shewanella sp. Gammaproteobacteira

Bacillus sp. Firmicutes

Arthrobacter sp. Actinobacteria

Pseudomonas sp. Gammaproteobacteira

Stappia sp. Alphaproteobacteira
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group, and four to the α-proteobacteria group (Table 2). Among the 
total of fifty-one isolates from the three sampling stations, the dominant 
group were the γ-proteobacteria (43.1%), followed by the α-proteobac-
teria (27.5%), and the Actinobacteria (11.8%). According to Gray and 
Herwing (1996), the γ-proteobacteria group is dominant in marine 
sediments. The microorganisms prevailing in the rhizosphere originate 
in the soil. However, because of variation in root exudates characte-
ristics between plant species, the specific organisms constituting the 
rhizosphere microbial community vary with both plant species and soil 
type (Grayston et al. 1998, Latour 1996, Maloney et al. 1997). In our 
study, most sequences had < 97% sequence similarity to previously 
cultivated microorganisms and phylogenetic analyses of isolated 
bacteria from the rhizosphere of P. communis revealed that the majority 
of bacteria detected were closely related to the γ-proteobacteria and 
the α-proteobacteria. However, further study will be required to better 
understand the diversity, density, and functions of rhizosphere bacteria 
of halophytes on mudflat environments.

We found higher bacterial densities in the P. communis rhizosphere 
than in soils remote from the rhizosphere. Variation in rhizosphere 
bacterial populations among localities and plant communities suggests 
that halophyte species and soil type affects the rhizosphere bacterial 
communities in mudflat environments (Grayston et al. 1998, Latour 
1996, Maloney et al. 1997). 
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