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INTRODUCTION

The distribution and abundance of species are governed by en-
vironmental conditions, including the diversity and stability of stream 
habitats (Cummins 1979, Ward and Stanford 1979) that comprise 
components of ecological niches (Malmqvist and Otto 1987). There-
fore, understanding the environmental features associated with stream 
communities is of fundamental importance for ecosystem manage-
ment. Benthic macroinvertebrates, which are taxonomically diverse, 
sedentary in behavior, and have long life cycles, respond to envi-
ronmental disturbances in an integrated and continuous manner, and 
have therefore been widely used for assessing water quality in aqua-
tic ecosystems. There have been numerous accounts of the use of 
benthic macroinvertebrates as indicators of short- and long-term 

environmental changes in running waters (Hellawell 1978, Lenat 
1988, Smith et al. 1999, Hawkins et al. 2000). Species richness 
(i.e., the number of species occurring in a given area) is commonly 
used as an integrative descriptor of the community (Lenat 1988), as 
it is influenced by a large number of environmental factors, such as 
environmental stability (Cummins 1979, Ward and Stanford 1979), 
and heterogeneity (Malmqvist and Otto 1987), and biological fac-
tors (MacArthur 1965, Feminella and Resh 1990). The species rich-
ness of aquatic invertebrates is also strongly influenced by natural 
and anthropogenic disturbances (Rosenberg and Resh 1993), which 
may lead to spatial discontinuities in predictable gradients (Ward 
and Stanford 1979, 1983) and losses of taxa (Brittain and Saltveit 
1989).  

Spatial heterogeneity plays a governing role in determining bio-
logical communities and subsequently causes complex environment- 
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community relationships (Turner and Gardner 1991, Levin 1992). 
Guilds of organisms can be used as expressions of spatial hetero-
geneity. Functional feeding groups (FFGs), which are guilds of ma-
croinvertebrates that obtain food in similar ways regardless of taxo-
nomic affinities, represent taxonomically heterogeneous assemblages 
of benthic fauna. Moreover, they reflect the food resources available 
in a given area, therefore their distributions respond mostly to 
disturbances that alter the food base of the system (e.g., Hershey 
et al. 1988, Hart and Robinson 1990). FFGs thus can be used to 
obtain information on a variety of disturbances. The proportion of 
different groups may change in response to a disturbance that affects 
the food base of the system, thereby offering a means of assessing 
disruption of ecosystem functioning. The percentages of FFGs have 
been commonly used as indicators for rapid bioassessment (Resh 
and Jackson 1993, Barbour et al. 1999).  

Understanding the effects (or contribution) of environmental va-
riables on the distribution of species is important for the evaluation 
and management of target ecosystems. One of the methods used 
to evaluate these effects, sensitivity analysis, is carried out using 
mathematical models of ecological processes. The purpose of sensi-
tivity analysis is to determine the response(s) of the model dyna-
mics to variation in the values of some parameters (Park et al. 
2007). One or more outcomes of the model are selected (usually 
state variables or some statistical indicators) and their behaviour is 
evaluated across a plausible range of parameter values (McCallum 
2000). 

Artificial neural networks (ANNs) have been used as tools in 
ecological modelling (Lek and Guégan 1999, Lek et al. 2005, Park 
and Chon 2007). A multilayer perceptron (MLP) with a backpro-
pagation learning algorithm (BP), which is a supervised ANN, has 
been used for various purposes (Lek and Guégan 2000): patterning 
complex relationships (Lek et al. 1996), predicting population and 
community development (Recknagel et al. 1997, Chon et al. 2000), 
and modelling habitat suitability (Paruelo and Tomasel 1997). The 
explanatory power of the MLP has been criticized due to its black- 
box model approach, but now sensitivity analysis methods have 
been developed to identify the most influential variables in MLP 
models (Lek et al. 1996). Although the apparent complexity of 
ANNs was originally believed to limit our ability to gain explanato-
ry insight into the prediction process, recent advancements (Olden 
and Jackson 2002, Gevrey et al. 2003) have illustrated that this 
indeed not the case and researchers now have the ability to identify 
individual and interacting contributions of the predictor variables in 
ANNs (Olden et al. 2004).

In this study, we evaluated the contribution of environmental 
factors in determining the proportional distribution of FFGs using 
MLP and sensitivity analysis. 

MATERIALS AND METHODS

Field Data
Benthic macroinvertebrate communities were collected at 664 

sites in the province of Overijssel, The Netherlands (Verdonschot 
and Nijboer 2000) (Fig. 1). The sampling dates were spread across 
seasons as well as over several years (from 1981 to 1985). Six hund-
red and fifty sites were used for our study, as fourteen sites were 
discarded due to missing values or other inconsistencies. The sam-
pling objective was to capture the majority of the species in suffi-
cient numbers to determine their relative abundances at a given site. 
At each site, major habitats were selected over a 10- to 30-m stretch 
of the water body and were sampled with the same sampling effort. 
Macroinvertebrate samples were taken to the laboratory, sorted by 
eye, counted, and identified to species level. 

We recorded a total of 854 species, and Chironomidae, Coleop-
tera, and Oligochaeta were the most abundant taxa. All species were 
categorized into 7 functional feeding groups (FFGs) (collector-fil-
terer, collector-gatherer, predator, scraper, piercer, shredder, and scra-
per-miner) according to their functional feeding types. The propor-
tions of the dominant four FFGs (collector-filterer, predator, scraper, 
and shredder) were calculated at each study site following Resh and 
Jackson (1993) and Barbour et al. (1999). The dominant four groups 
have previously been used for the rapid bioassessment of aquatic

Fig. 1. Sampling sites in the province of Overijssel, The Netherlands. 
Each sampling site is marked with a dark circle.
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ecosystems (Barbour et al. 1999). Additionally, among 90 environ-
mental variables measured at each study site, we selected 17 envi-
ronmental variables that made high contributions to the explanation 
of species richness on the basis of a sensitivity analysis performed 
on a preliminary multilayer perceptron model using a backpro-
pagation learning algorithm, (Table 1). Correlation coefficients for 
the correlations among these 17 variables were low (less than 0.4) 
for most of the variables (Gevrey et al. 2005). 

In the modelling process, all variables were proportionally res-
caled between 0 and 1 in the range of the minimum and maximum 
values to give the same weight (or importance) to all variables. 
Before rescaling, the environmental variables were transformed by 
natural logarithm to reduce skewed distributions (Legendre and Le-
gendre 1998, Lek and Guégan 1999).

Modelling Process
To evaluate the effects of environmental factors on the distribu-

Table 1. Environmental variables used in the model

Variable Description Unit Mean SD*

%Bank Percentage sampled habitat: bank %  18.3  23.6 

%Emveg Percentage sampled habitat: 
emergent vegetation

%  16.3
 

 22.3
 

%Gravel Percentage sampled habitat: 
gravel

%   1.3
 

  5.3
 

%Silt Percentage sampled habitat: silt %  15.6  18.6 

%Suveg Percentage sampled habitat: 
submerged vegetation

%  12.0
 

 19.5
 

%Vegta Percentage sampled habitat: 
floating vegetation

%  13.0
 

 20.6
 

Ca2+ Calcium mg/L  51.0  25.9 

Conduc Electric conductivity μS/cm 428.4 237.3 

Depth Depth m   1.1   1.6 

NH4
+ Ammonium mgN/L   1.3   2.5 

NO3
- Nitrate mgN/L   3.8   8.0 

pH Acidity   7.1   1.0 

Season Season: (0: summer, 1: winter) - - 

Slope Slope m/km   5.7  20.4 

Temp Water temperature ℃  13.3   6.2 

Velocity Flow velocity m/s   0.1   0.2 

Width Width of stream m  65.4 472.8 

* Standard deviation.

tion of FFGs, we first predicted the proportion of the four selected 
FFGs based on the differences in the environmental conditions. 
MLP with BP was used as a nonlinear predictor (Haykin 1994) 
(Fig. 2). Next, the contributions of the environmental factors were 
estimated through a sensitivity analysis of the MLP model. BP is 
a supervised learning algorithm designed to minimize the mean 
square error between the computed output of the network and the 
desired output. The MLP normally consists of three layers: input, 
hidden, and output layers. It requires input vectors (17 environ-
mental factors in this study) in the input layer, as well as target (or 
desired) values (proportions of each of the 4 FFGs in this study) 
in the output layer corresponding to each input vector. The modelling 
was carried out in three phases: learning, test, and sensitivity ana-
lysis. Of the 650 samples, 75% of the samples (433) were used as 
a training dataset and remaining 25% of the samples were for the 
testing dataset. Therefore, the dataset for training consisted of 433 
samples with 17 input variables and 4 output variables. Through 
many trials with different numbers of neurons in a single hidden 
layer, a model with 5 hidden neurons was chosen as optimum size 
for this study. The training process was stopped at 500 iterationss 
to avoid the overfitting problem. A description of the learning rules 
can be found in Rumelhart et al. (1986), Kung (1993), and Lek and 
Guégan (2000). Correlation coefficients were calculated to verify 
the predictability of the network in both learning and testing phases. 

Sensitivity Analysis of MLP Model
After the learning process for the MLP models, a sensitivity 

analysis was carried out to evaluate the contribution of each input 
variable (parameters of the population dynamic models) to the 
output values of MLP. There are several ways to perform the sen-
sitivity analysis with MLP (Dimopoulos et al. 1999). Following Ge-
vrey et al. (2003), we used the ‘partial derivatives’ (PaD) method 
(Dimopoulos et al. 1995, 1999) to identify the degree of contri-
bution of the input variables. 

Fig. 2. Schematic diagram of a multilayer perceptron (MLP).
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The PaD method presents the output of the MLP models with 
respect to the input to obtain the profile of variations in the output 
associated with small changes in one input variable (Dimopoulos et 
al. 1995, 1999, Gevrey et al. 2003). The formula used to obtain the 
partial derivatives (dji) is:

d ji= Sj ∑
nh

h=1
who I hj (1- I hj)wih (1)

where Sj is the derivative of the output neuron with respect to its 
input, Ihj is the response of the hth hidden neuron, who and wih are 
weights between the output neuron and hth hidden neuron, and 
between the ith input neuron and the hth hidden neuron, respectively. 

If the partial derivative is negative, then for each parameter 
being analyzed, the output variable will tend to decrease as the 
input parameter increases. Conversely, if the partial derivative is 
positive, the output variable will tend to increase as the input 
parameter increases. The relative contribution of input variables to 
the MLP output can be estimated as the percentage of the sum of 
the squared partial derivatives (SSD) obtained for each input vari-
able using equation (2). 

(%)SSD j=
SSD j

∑
N

j=1
SSD j

×100

, SSDj= ∑
N

i=1
d ji (2)

where N is the number of input variables. The SSD values allow 
the classification of the variables according to their contribution to 
the output variable in the model: the input variable with the highest 
SSD value being the variable that most influences the output vari-
able. The details of the MLP sensitivity analysis as applied to eco-
logical modelling were fully described by Gevrey et al. (2003).

RESULTS  

Among the seven FFGs in the dataset, the collector-filterer and 
collector-gatherer groups showed the highest number of species and 
number of individuals at each study site (Fig. 3). The number of 
species and their abundance were strongly correlated (r = 0.91, p <
0.01). Among the seven FFGs, the proportions of the dominant four 

FFGs (collector-filterer, predator, scraper, and shredder) were se-
lected following Resh and Jackson (1993) and Barbour et al. (1999). 
These four groups have been proposed as appropriate for use in the 
the rapid bioassessment of aquatic ecosystems (Barbour et al. 1999).

The proportion of the 4 selected FFGs at each site were pre-
dicted by the MLP based on the 17 environmental variables with 
mean correlation coefficients of  0.78 (p < 0.05) and 0.68 (p < 0.05) 
between the observed and estimated values for the training and 
testing phases, respectively. The frequency histogram for the error 
values showed that most error values lie around zero, and mean 
error values ranged from 0.000 to 0.004 (SD 0.000～0.002) for all 

cases. 
To evaluate the influence of environmental variables on FFGs, 

the PaD sensitivity analysis was conducted for each FFG. Fig. 4 
shows the relative contribution of each variable to the prediction for 
different FFGs. Dotted lines on the figure show values mean va-
luesfor the 17 variables. Different variables influenced the FFGs in 

Fig. 3. Differences in the mean number of species and abundance in 
each functional feeding group. Error bars indicate the stan-
dard deviation. CF: collector-filterer, CG: collector-gatherer, 
PR: predator, SC: scraper, PI: piercer, SH: shredder, and SM: 
scraper-miner.

Fig. 4. Relative contribution of 17 environmental variables to the four 
functional feeding groups. Dotted lines indicate average va-
lues for the contribution of each environmental variable.
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different ways. Collector-filterers were mainly influenced by Ca2+ 
which made a contribution of about 31% to the predicted outcome, 
followed by the width of the stream (25%) and NH4

+ (8%). Shredders 
were also strongly influenced by Ca2+ (14%) and width (14%), as 
well as NO3

- (12%), depth (10%), and NH4
+ (7%). Scrapers were 

influenced by 6 variables: the most influential of which were Ca2+ 
(28%) and depth (18%), followed by NH4

+, velocity, % gravel, and 
NO3

-. Finally, predators were influenced by depth (20%) and pH 
(18%), while %bank, %silt, slope, and Ca2+ also made relatively 
small contributions to the representation of predators. Overall, Ca2+ 
and depth had a relatively high influence for all four FFGs, while 
pH, % gravel, and %silt, and %bank, affected only specific groups.

For selected variables showing higher-than-mean contribution va-
lues, partial derivatives of each variable were evaluated by plotting 
them against the corresponding input values. For shredders, the 
selected variables generally showed positive influences (Fig. 5). In 
particular, low values of NH4

+ and width showed very strong posi-
tive influences, whereas high values of NO3

- showed strong nega-
tive influences. This indicates the relative importance of shredders 
in natural springs and headwater streams. For scrapers, NH4

+ and 
Ca2+ displayed negative influences, whereas depth, velocity, NO3

-, 
and %gravel showed positive influences (Fig. 6). These are all vari-
ables indicating more natural running water environment. In parti-
cular, the proportion of scrapers increased with increasing depth, 
indicating their more important role in deeper running waters. For 
collector-filterers, the selected variables generally had a negatively 

Fig. 5. Partial derivatives as a function of the selected environmental 
variables showing higher than average contribution to the out-
put for shredders in the MLP model.

influence. Width and NH4
+, in particular, negatively influenced co-

llector-filterers at low values, whereas Ca2+ had a strongly negative 
influence on the collector-filterers at high values (Fig. 7). However, 
low values of Ca2+ showed positive influences. Collector-filterers 
play a more important role in large, more or less enriched water 
bodies. For predators, the selected variables generally showed ne-
gative effects (Fig. 8). However, low values of Ca2+ showed a posi-
tive influence, which indicates their important role in acidic waters. 
Overall, predators were more dominant in ‘extreme’ environments, 
like intermittent or heavily polluted water bodies.

Fig. 6. Partial derivatives as a function of the selected environmental 
variables showing higher than average contribution to the out-
put for scrapers in the MLP model. 

Fig. 7. Partial derivatives as a function of the selected environmental 
variables showing higher than average contribution to the out-
put for collector-filterers in the MLP model.
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Fig. 8. Partial derivatives as a function of the selected environmental 
variables showing higher than average contribution to the out-
put for predators in the MLP model.

DISCUSSION AND CONCLUSION

In this study we evaluated the contribution of environmental fac-
tors to the distribution of FFGs through sensitivity analysis of the 
MLP model. FFGs are based on associations among a limited va-
riety of feeding adaptations found among the benthic macroinver-
tebrates and the basic categories of food resources available in the 
habitat (Callisto et al. 2001). Feeding measures or trophic dynamics 
encompass FFGs and provide information about the balance of fee-
ding strategies and morphology in the benthic assemblage (Barbour 
et al. 1999). Trophic dynamics include the relative abundance of 
herbivores, carnivores, omnivores, and detritivores. The trophic dy-
namics in our study system were explained using the maximum 
exergy principle through dynamic structure models with the data-
base used in this study (Jørgensen et al. 2002); the structure giving 
the highest exergy under the prevailing conditions represents the 
expected response to the prevailing conditions. 

MLP has the capability to handle nonlinear, complex ecological 
data and to incorporate causality (Lek and Guégan 2000, Park et 
al. 2007). Although MLP models are able to make good predic-
tions and are recognized as powerful tools (Skelton et al. 1995, 
Liong et al. 2000), at the beginning of their development they were 
considered as black-box approaches because of a lack of explana-
tory methods for relationships between input and output variables. 
Presently many different algorithms have been developed to avoid 
the “black-box” flaw of ANNs, and now they can be used as sensi-
tivity analysis tools to determine the contributions of the indepen-
dent variables and the way they act on the dependent variable (Gar-

son 1991, Goh 1995, Lek et al. 1996, Balls et al. 1996, Maier and 
Dandy 1996, Scardi and Harding 1999, Dimopoulos et al. 1995, 1999, 
Olden 2003). 

Through the sensitivity analysis of the MLP model, we evaluated 
the relative contributions of selected environmental variables on the 
composition of FFGs (Figs. 4～8) Different variables influenced the 
FFGs in different ways. Shredders and collector-filterers were strongly 
influenced by Ca2+ and stream width. Scrapers were influenced 
mostly by Ca2+ and stream depth. Finally, predators were influenced 
by depth and pH. Although Ca2+ and depth had strong effects on 
different FFGs, they affected each FFG differently. Increasing levels 
of Ca2+ had negative effects on shredders, and positive effects on 
scrapers and collector-filterers, whereas increasing depth had posi-
tive effects on scrapers, and negative effects on predators. These 
results reflected the relationship between actual habitat conditions 
and the distribution of FFGs. These results suggest that this sensiti-
vity analysis approach has high potential for use as a tool for the 
evaluation of the importance of environmental factors for ecosystem 
management and in support of ecosystem restoration projects. 

Patterns of FFG distribution reflect resource distribution and use, 
and facilitate the understanding of organic matter processing in 
streams (Vannote et al. 1980). Animal distribution patterns also, in 
part, reflect their tolerances to environmental variables and accor-
dingly, community structure has been used in water quality moni-
toring (Furse et al. 1984). An imbalance in FFGs reflects unstable 
dynamics in their food resources, and may reflect stressed condi-
tions in their environment (Barbour et al. 1999). Changes in food 
availability obviously play a potentially large role in determining 
the seasonal and spatial abundance of the various FFGs. Longitu-
dinal changes in resource abundance were the basis of the river 
continuum concept (Vannote et al. 1980). Proportionately more ge-
nera of shredders are found in headwater streams compared to down-
stream (Wiggins and Mackay 1978). Specialist FFGs such as scra-
pers and shredders are more sensitive organisms and are thought to 
be well represented in healthy streams. Shredders utilize course parti-
culate organic matter (CPOM) and associated bacterial and fungal 
colonizers as a food source, and are dominant in upper stream areas 
such as headwater streams in forests. Meanwhile, generalists such 
as collector-filterers have a broader range of acceptable food mate-
rials than specialists (Cummins and Klug 1979), and thus are more 
tolerant to pollution that might alter the availability of certain food 
sources. However, collector-filters are also thought to be sensitive 
in low-gradient streams, and dominant in downstream areas (Wallace 
et al. 1977). Collector-filterers and collector-gatherers utilize fine 
particulate organic matter (FPOM) as the primary food resource. 
Variability in the proportion of predators is less correlated to re-
source base changes resulting from natural changes in habitat and 
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more attuned to changes in factors that cause significant changes in 
the availability of prey items, such as toxicity or nutrient supply. 
A relatively low to moderate proportion of predators reflects a 
balanced trophic structure, while extremely high or low proportions 
reflect an imbalance, possibly due to physicochemical perturbation 
(TNRCC 1999). Based on these characteristics, the proportions of 
these FFGs are sometimes used as indicators of habitat quality in 
rapid biological assessments of water quality. 

FFGs constitute a good tool in biomonitoring programs, and are 
particularly useful for the evaluation of available trophic resources 
and their use in lotic ecosystems (Cummins and Klug 1979, Mihuc 
1997, Callisto and Esteves 1998), allowing evaluation of the func-
tional organization of communities. However, although FFGs are 
useful for evaluation of environmental conditions, their utility is not 
without limitations. For example, there can be difficulties in making 
the proper assignment of some taxa to functional feeding groups, 
as  food sources can change between the developmental stages of 
a species. For example, predaceous stoneflies ingest more periphy-
ton and detritus when small, and more animal prey when large 
(Allan 1982), and young nymphs of Baetis and Cinygmul feed as 
collectors in summer, but subsequently increase their consumption 
of diatoms (Allan and Castillo 2007). 

In conclusion, the representation of functional feeding groups in 
stream ecosystems was effectively predicted from environmental 
variables using MLP with BP. In an evaluation of the input vari-
ables, sensitivity analysis using partial derivatives demonstrated the 
relative importance of environmental variables for the FFGs, and 
showed that different variables influence the FFGs in different ways. 
Our results demonstrated that MLP models can predict the propor-
tional representation of functional groups based on ecological vari-
ables, demonstrating that FFG’s may be a useful tool for the cha-
racterization of community structure and the ecological assessment 
of target ecosystems. 
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