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OVERVIEW

Prader-Willi syndrome (PWS; OMIM 176270) has an estimated prevalence of 
1/10,000-1/30,000, and males and females are affected equally in all ethnic groups 
[1]. The PWS critical region is located on chromosome 15q11-q13. Normally only 
paternally inherited genes on this region are expressed, and PWS is caused by the 
abnormal expression of one or more of these genes [2,3]. Genetic mechanisms of 
PWS are paternal deletion of the 15q11-q13 region; maternal uniparental disomy 
15; and imprinting defects [4]. Deletions in PWS are further divided into type-1 
and type 2 deletion (Fig. 1).

PWS affects multiple body systems. Prenatal growth is usually normal. Fetal 
movement is decreased, and there is increased need of assisted delivery or cesare-
an section [5,6]. At birth weight and body mass index (BMI) are 15% lower than 
average. Severe hypotonia during infancy can lead to poor suck and failure to 
thrive. Hypotonic status improve after infancy, but mild-to-moderate hypotonia 
persists throughout life [7,8]. 

As they grow up, they show hyperphagia due to lack of satiety with obsessive 
food seeking. They become severely obese unless food intake is strictly controlled. 
In uncontrolled cases, obesity, and its complications are the major causes of mor-
bidity and mortality. Most PWS patients show developmental delay and intellec-
tual disability [9].

Endocrine dysfunction is also common in PWS. Growth hormone (GH) defi-
ciency is present in about 74% of cases [10,11]. GH replacement therapy has posi-
tive effects not only on growth and body composition but also on development, 
behavior, and nocturnal respiratory abnormalities, although a careful respiratory 
follow up is mandatory during long-term GH administration [12,13]. Hypogo-
nadism is thought to have a hypothalamic origin, manifested as hypogenitalism, 
incomplete pubertal development and infertility [14]. Other endocrine abnor-
malities such as hypothyroidism, central adrenal insufficiency and type 2 diabetes 
can also occur [9].
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MOLECULAR GENETICS AND DIAGNOSIS

The PWS region is located spans on the long arm of chro-
mosome 15, with length of about 6Mb (Fig. 1). Within this 
region, at least 2.5 Mb comprises genes which are expressed 
differentially depending on parental origin. This region also 
includes several non-coding RNAs, which are believed to be 
involved in the regulation of alternative splicing [4,15]. 

Most common genetic cause of PWS patients is deletion of 
15q11-q13 from the paternal origin (65-75%) [15,16]. Mater-
nal uniparental disomy (mUPD) accounts for 20-30% of cas-
es, which occurs when both chromosomes 15 are inherited 
from the mother [6,7]. The least common mechanism (1-3%) 
is imprinting defects (ID), caused by epimutations or micro-
deletions in the PWS-imprinting center (PWS-IC). 

DNA methylation analysis is usually the first step for diag-
nosis of PWS DNA methylation analysis can detect all three 
types. but it cannot distinguish the molecular class (i.e., dele-
tion, UPD, or ID). So further investigations like FISH or CMA 
to determine molecular class is required. When chromosomal 
analysis with FISH or CMA rather than DNA methylation was 
first performed and reveals a deletion in the PWS/AS region 

(i.e., 15q11.2-q13), it is still necessary to perform DNA meth-
ylation analysis to distinguish PWS with Angelman Syndrome.

GENOTYPE-PHENOTYPE RELATIONSHIPS

There is no symptom of PWS which occurs only in specific 
genotype. But there are some clinical characteristics which 
show differences in frequency or severity according to geno-
type. Feeding problems, sleep disturbances, hypopigmentation 
and speech and language deficits are more common in dele-
tion [17]. Type 1 deletion patients are known to have better 
academic performance and intellectual abilities, and more 
compulsiveness than individuals with type 2 deletion [18,19]. 
mUPD patients show higher incidence of post-term delivery, 
psychosis and autism spectrum disorder. On the other hand, 
typical PWS facial appearance or hypopigmentation are less 
common in mUPD patients [15]. 

GENES INVOLVED IN PWS

The 15q11.2-q13 region has four distinct regions divided by 
three common deletion breakpoints [20] (Fig. 1): 1) a proxi-
mal nonimprinted region contain four biparentally expressed 
genes (NIPA1, NIPA2, CYF1P1, and GCP5. 2) The “PWS re-
gion” contain five polypeptide coding genes (MKRN3, MA-

GEL2, NECDIN, and the bicistronic SNURF-SNRPN), C15orf2, 
a cluster of C/D box small nucleolar RNA genes (snoRNAs), 
and several antisense transcripts. 3) The “Angelman syndrome 
(AS) region” contain the preferentially maternally expressed 
genes UBE3A and ATP10A. 4) A distal nonimprinted region 
contain a cluster of three GABA receptor genes, the gene for 
oculocutaneous albinism type 2 (OCA2), HERC2 [15].

MKRN3
The Makorin Ring Finger Protein 3 (MKRN3, ZNF127) gene 

encodes a zinc finger protein of the Makorin family. This gene 
is paternally expressed. This gene is known to inhibit initiation 
of puberty, and loss of function mutations in MKRN3 are rec-
ognized as the main genetic cause of central precocious puber-
ty [21]. MKRN3 is thought to be related with hypogonadism 
and infertility in PWS.

MAGEL2
Hyperphagia is commonly observed in individuals with PWS, 

associated with a defect in the hypothalamic arcuate nucleus. 
Interaction of neuropeptide Y (NPY) and agouti-related pep-

Fig. 1. Chromosome map of 15q11.2-13.1 region. BP1, break-
point 1; BP2, breakpoint 2; BP3, breakpoint 3; Cen, Centromere; 
Tel, Telomere. Type 1 deletion (T1D) extend from BP1 to BP3, and 
type 2 deletion (T2D) extend from BP2 to BP3.
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tide (AgRP) stimulates food intake, whereas proopiomelano-
cortin (POMC) reduces it. Loss of MAGEL2 expression inhibits 
POMC neurons, thus food intake is less repressed [22,23]. But 
patients with point mutations on the paternal allele of MAGEL2 
does not usually show the high appetite and severe obesity 
though other clinical characteristics of PWS are present, which 
can disassociate MAGEL2 and the hyperphagia.

Loss of expression of MAGEL2 also impairs reproductive 
function in mice. MAGEL2-null females showed extended and 
irregular estrous cycles, and males displayed decreased testos-
terone levels, and reduced pheromone detection. These results 
suggest that lack of expression of MAGEL2 contributes to the 
reproductive deficiencies observed in PWS.

NDN 
The Necdin (NDN) gene encodes a DNA binding protein 

necdin, which is postulated as a key regulator of GnRH levels 
both in vitro and in vivo, modulating essential intracellular 
processes for neurite and axonal outgrowth [24-26]. Also, NDN 
paternal-deficient mice showed irregular breathing and sleep 
apneas. NDN might be a genetic factor contributing to apneas 
and respiratory dysfunctions of PWS.

lncRNAs
Within the Prader-Willi region there are a series of long non-

coding RNAs (lnc RNAs) which are characteristically more 
than 200 nucleotides long. They are thought to be involved in 
epigenetic modifications of DNA, and regulation of gene ex-
pression at transcriptional and post-transcriptional levels [27-
29]. One of the lnc RNAs, Prader-Willi Region Non-Protein 
Coding RNA 1 (PWRN1), is biallelically expressed in the testis 
and kidneys, and monoallelic expressed in the brain [30]. 
PWRN1 is thought to have an indirect role on the imprinting 
mechanism through keeping the paternal allele in an open 
chromatin configuration, allowing assess to transcription fac-
tors [31]. 

NPAP1
The Nuclear Pore Associated Protein 1 (NPAP1) is bialleli-

cally expressed in adult testis and monoallelically expressed in 
fetal brain, including the hypothalamus which is related to 
several endocrine features of PWS [30,32]. This gene is also as-
sociated with the Nuclear Pore Complex (NPC), in which the 
main function is to regulate macromolecular transport be-
tween the nucleus and the cytoplasm. NPCs also participates 
in several nuclear processes, such as gene regulation, mRNA 

biogenesis, and cell cycle control.

SNURF-SNRPN 
SNURF-SNRPN is a complex bicistronic gene encoding two 

different proteins. SNURF is encoded by exons 1-3 and pro-
duces a small nuclear protein of unknown function [33], ex-
ons 4-10 correspond to the SNRPN portion and encode the 
protein SmN, involved in mRNA splicing [34].

Small Nucleolar RNAs (snoRNAs) are within the SNURF-
SNRPN transcript. snoRNAs participate in DNA methylation, 
alternative splicing and post-transcriptional regulation [4,35]. 
The PWS region encompasses five single copy snoRNA genes 
(SNORD64, SNORD107, SNORD108, SNORD109A, and SNO-
RD109B) and two snoRNA gene clusters (SNORD115 and SNO-

RD116). Although most of the SNORDs are ubiquitously ex-
pressed in human tissues, SNORD115 and SNORD109B are 
expressed exclusively in the brain.

SNORD116 has emerged as a critical, and possibly, determi-
nant candidate in PWS. Patients with small deletions (150-200 
kb) or translocations showed PWS phenotype [36-38]. Snord-
116-KO mice also displayed PWS features such as post-natal 
growth retardation and hyperphagia [39,40]. Mice model SN-
ORD116 was knocked-out specifically in NPY neurins in the 
hypothalamic arcuate nucleus showed the same overall phe-
notype observed in mice lacking SNORD116 globally; low birth 
weight, increased body weight gain in early adulthood, increased 
energy expenditure and hyperphagia [41]. This suggests that 
SNORD116 control NPY neuronal functions, and thus food 
intake and energy homeostasis. Also, Snord116-deficient mice 
showed decreased activity of the hypothalamic prohormone 
convertase PC1 impairing the prohormone processing of pro-
insulin, pro-GH-releasing hormone, and proghrelin [42]. In 
addition, Snord116-deficient mice displayed loss or shift in 
methylation dynamics of CpG islands in the cerebral cortex 
dependent on the circadian cycle [43]. 

SNORD115 gene encodes the serotonin receptor 5-HT2C 
[35]. 5-HT2C gene encodes G protein-coupled receptor specif-
ic to the brain, whose activation is associated with a variety of 
physiological processes, such as dopamine modulation, anxi-
ety, sleep regulation, satiety response, energy balance, and lo-
comotor activity [44]. Lack of SNORD115 is not sufficient to 
cause PWS, but a phenotypic effect when absent along with 
other genes in the PWS critical region cannot be excluded. 5-HT2C 
receptor knockout mice that developed hyperphagia and late-
onset obesity [45,46]. The absence of SNORD115 expression 
in PWS accompanied by the impairment of the 5-HT2C recep-



38  Journal of Interdisciplinary Genomics

Journal of Interdisciplinary Genomics 2021;3(2):35-40http://isgm.kr

tor activity may be partly responsible for some of the behav-
ioral and metabolic features of PWS.

EPIGENETICS 

Maternal microdeletions of the Angelman syndrome imprint-
ing control region (AS-ICR) I causes Angelman syndrome [47, 
48]. The AS-ICR contains alternate 5́  noncoding exon for SN-
RPN that are uniquely expressed in oocytes [48,49]. Oocyte-
specific transcription leads to methylation and transcriptional 
silencing of the maternal allele of the PWS-ICR. In addition, 
some individuals with AS have imprinting mutations that de-
letes a binding site for the transcription factor SOX2 [50]. These 
studies of AS imply that AS-ICR has an important role for es-
tablishing silencing the maternal allele of the imprinted genes 
within the PWS locus. 

There are several additional epigenetic marks differentiated 
by parental origin at the PWS-ICR. Histone H3 lysine 9 (H3K9) 
methyltransferase SETDB1 associates with the transcription fac-
tor ZNF274 bound to sites within the 5́  cluster of SNORD116 
repeats [51]. Knockdown or inhibition of either SETDB1 or 
ZNF274 induced SNORD116 transcript expression from the 
normally silent maternal allele [51-53].

Epigenetic Therapies 
The general strategy for epigenetic strategies for PWS involves 

de-repressing the maternal silent PWS-ICR to activate SNRPN 
and SNORD116 transcription [54]. Several inhibitors of EHMT2/ 

G9a, a histone 3 lysine 9 methyltransferase were able to reacti-
vate the expression of paternally expressed SNRPN and SNO-

RD116 from the maternal chromosome, both in cultured PWS 
cell lines and in a PWS mouse model [55,56]. Inhibition of 
SETDB1 using shRNA knockdown resulted in partial reactiva-
tion of SNORD116 and 116HG in PWS-derived iPSC cell lines 
and neurons [51]. In addition, when inactivated ZNF274 using 
CRISPR/Cas9 in PWS-derived iPSC lines, reactivation of both 
SNRPN and SNORD116 resulted, as well as a reduction of H3-
K9me3 at the PWS-ICR [53]. These studies suggest that epigen-
etic strategies for unsilencing maternal SNORD116 are poten-
tial candidates for treatments of PWS.

GENETIC COUNSELING 

Recurrence risk of PWS differs according to genotype. Spo-
radic deletion cases have <1% risk of recurrence, while recur-
rent risk in structural abnormalities of chromosome 15 (such 

as translocations, ring formation, isochromosome or inversions) 
can be as high as 25-50%. 

Occurrence of mUPD 15 is typically de novo and recurrence 
risk is low (<1%). However, there is possibility that the father 
has a Robertsonian translocation involving chromosome 15. 
This can result in a sperm nullisomic for 15, which would re-
sult in an embryo with mUPD 15. So, the father of the child 
with mUPD should be recommend to perform chromosomal 
analysis.

Rarely, a small marker chromosome is present in a patient 
with mUPD 15 [57]. In these patients, both parents’ karyotype 
should be examined, as these small marker chromosomes may 
increase the risk for nondisjunction and UPD [58].

The majority (approximately 85%) of PWS patients with an 
ID have a de novo epigenetic mutation (IIIb) with the recur-
rence risk below 1%. However, in approximately half of these 
with microdeletion in the IC (IIIa), the IC deletion is familial 
and the recurrence risk is 50%. Therefore, for patients with im-
printing defects, IC analysis by MS-MLPA (Methylation-Specif-
ic Multiplex Ligation-dependent Probe Amplification). MS-
MLPA or DNA sequencing should be performed to investigate 
the exact origin [1,59]. And fathers of patients with an IC dele-
tion should be recommended with DNA methylation and 
dosing analysis (or sequence analysis) [15].
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