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INTRODUCTION

Rare diseases, typically defined as conditions affecting fewer than 1 in 2,000 in-
dividuals, represent a significant global health challenge. It is estimated that over 
400 million people worldwide suffer from such conditions, with approximately 
80% of these diseases believed to be genetic in origin [1,2]. The Online Mende-
lian Inheritance in Man (OMIM) database currently documents over 6,300 dis-
tinct disease-gene associations, highlighting the genetic diversity and complexity 
inherent in rare diseases.

In South Korea, rare diseases are defined more narrowly, where conditions af-
fecting fewer than 20,000 individuals are considered rare [3]. Among these, dis-
eases with fewer than 200 patients are classified as extremely rare. The limited 
number of patients, along with the requirement of specialized knowledge for di-
agnosis, often complicates the identification and management of these diseases. 
As of November 2023, approximately 1,250 diseases are officially recognized as 
rare in South Korea, where the national healthcare system provides coverage for 
the associated medical expenses. This underscores the significant burden that rare 
diseases place on patients and healthcare systems alike, given the persistent health 
risks and complications associated with these conditions.

Currently, the most widely used next-generation sequencing (NGS) technology 
for diagnosis of rare diseases is whole-exome sequencing (WES). This method tar-
gets the exonic region, which contains the protein-coding sequences of the ge-
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nome. Although the exome only comprises 1%–2% of the ge-
nome, it contains 85% of genetic variants that have a high im-
pact on the pathogenicity of diseases [4]. In addition, WES al-
lows for a high sequencing depth in an accurate and cost-effec-
tive manner compared to other sequencing platforms, en-
abling the reliable detection of genetic variants such as single 
nucleotide variants (SNVs) and short insertions and deletions 
(INDELs). Moreover, data generated by WES is relatively small 
and manageable, greatly reducing computational burden and 
time required for analysis. These factors make WES meritable 
for researchers with large patient cohorts and even make trio 
analysis feasible, which is very important in identifying caus-
ative variants. 

Despite the advantages described above, WES is limited to 
the exonic region; therefore, non-coding variants and structur-
al variations (SVs) in the intronic regions cannot be detected. 
Hence, whole-genome sequencing (WGS) is used when ge-
nome-wide analysis is necessary. SNVs and INDELs in the 
non-coding regions in addition to SVs can be detected with 
WGS, which can make this sequencing platform more appro-
priate than WES depending on the aim of the study. However, 
short-read WGS produces sequence reads with an average 
length of 100 bp. As such, analysis of complex SVs or repeat 
regions with lengths over 100 bp is still challenging.

Diagnosis rates using WES or WGS data range from 25%–
50%, yielding slightly better rates with WGS [5,6]. In other 
words, roughly 50% of patients remain undiagnosed. Among 
many factors behind the difficulties hindering diagnosis, the 
technical limitations of short-read sequencing (SRS) contrib-
ute considerably by limiting the effectiveness in detecting and 
analyzing complex genetic variations. To address these issues, 
developments in long-read sequencing (LRS) have emerged 
recently and attempts to identify previously undetected caus-
ative variants have increased using this technology. 

As of date, the most prevalent LRS platforms have been de-
veloped by PacBio and Oxford Nanopore Technologies 
(ONT), where each has its distinctions. PacBio’s LRS technolo-
gy is known for its overall high data quality, as molecules can 
be sequenced multiple times to generate low-error data [7]. 
However, LRS data generation with PacBio has a higher cost 
and requires larger amounts of higher-quality DNA [8]. On 
the other hand, ONT’s LRS technology provides a higher 
throughput at a lower cost, which is an important factor for 
improving the efficiency and scalability of research projects. 
Furthermore, longer mappable reads are achievable with ONT, 
but generally shorter reads are generated compared to PacBio 

[9]. As such, both technologies have their differences and re-
searchers should choose LRS platforms that are the most ap-
propriate depending on the objectives of their research. 

The introduction of LRS technology has enabled the charac-
terization of complex SVs, repeat regions, and phases that were 
previously difficult to identify, as well as the characterization 
of gene isoforms [10]. On the other hand, LRS also comes 
with certain limitations, including high cost and low accuracy 
per read. Furthermore, current bioinformatic analysis methods 
for LRS are limited and are still under development. Neverthe-
less, LRS definitely has its strengths, and various efforts are 
continuously being made to minimize error and improve 
analysis techniques. With advancements in this technology, 
LRS has significant potential to help characterize the complex 
genomic changes occurring in rare diseases and accurately di-
agnose affected patients.

This review article aims to introduce LRS technology and 
outline the applications of LRS in identifying causative vari-
ants of mendelian disorders or rare diseases.

COMPLEX STRUCTURAL VARIATIONS 

Structural variations (SVs), which are large genomic altera-
tions with sizes ranging from 50 bp to over 1 kb, are common-
ly associated with genetic diseases [11]. These alterations in-
clude inversions, translocations, insertions, deletions and can 
have a significant impact on a gene’s function. Due to their siz-
es, accurately depicting large SVs with SRS serves to be quite 
difficult. Furthermore, current NGS techniques have limited ca-
pabilities in detecting SVs in regions with complex or repeated 
sequences. To address this problem, researchers have adopted 
LRS to characterize these alterations effectively (Fig. 1A). With 
LRS, it is possible to survey longer portions of the genome and 
in turn, observe SVs with higher accuracy [12]. Merker et al. 
[13] performed low-coverage genome LRS to identify SVs that 
could not be detected using SRS in a patient with multiple 
neoplasia and cardiac myxomata. As a result, they identified 
over 6,000 insertions and deletions larger than 50 bp, includ-
ing a pathogenic 2,184 bp deletion overlapping with an exon 
of the PRKAR1A gene, which is associated with autosomal 
dominant Carney complex. Similar studies have been per-
formed using PacBio LRS as well as Nanopore LRS techniques. 
In a study by Damián et al. [14], LRS was performed on two 
patients with congenital aniridia for whom causative variants 
were not identified through SRS analysis. This approach re-
vealed pathogenic SVs in the PAX6 gene responsible for con-



� Choi Y, et al.: Potential of LRS to Identify Variants in Rare Diseases    17

Journal of Interdisciplinary Genomics 2024;6(2):15-20 http://isgm.kr

genital aniridia, including a 4.9 Mb inversion in intron 7 and a 
t(6;11) balanced translocation. In another study, long-read 
WGS was performed on a patient suspected of having autoso-

mal recessive glycogen storage disease type Ia (GSD-Ia) in 
whom the causative variant had not been properly identified 
by WES. While WES had detected only a single heterozygous 

Fig. 1. Identifying causative variants using short-read sequencing vs. long-read sequencing. (A) Detection of complex structural varia-
tions. Diagram showing an example of sequencing complex structural variations. The black and light red arrows indicate reads mapped 
to the complex structural variation. (B) Detection of tandem repeats. The colored regions indicate repeats occurring in the genome and 
different colors were used to differentiate each repeat unit. The light red and light blue lines show reads mapped to the repeat region. (C) 
Detection of transposable elements. The red regions indicate transposable elements. The light red lines show reads mapped to the 
transposable element region. (D) Detection of transcript isoforms. The black regions are reads mapped to the transcripts.
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pathogenic variant in the G6PC gene, LRS revealed the pres-
ence of a 7.1 kb deletion covering two exons on the other allele 
(Miao et al.) [15]. Furthermore, there are studies where LRS 
has been performed on a larger cohort as opposed to a few 
samples. Miller et al. conducted targeted LRS on 30 patients 
with previously identified causative variants and 10 patients 
without an accurate diagnosis. They successfully confirmed the 
previously identified pathogenic SVs and further detected 
pathogenic/likely pathogenic variants in 6 out of the 10 undi-
agnosed patients [16]. These studies demonstrate the potential 
of LRS in characterizing complex SVs, especially those that 
could not be identified with conventional SRS methods.

TANDEM REPEATS

Tandem repeats, which are short copies of DNA sequences 
that are repeated multiple times in the genome, are highly 
polymorphic and are an important source of genetic variation 
[17]. The size of these repeated sequences range from a few 
base pairs to hundreds of base pairs. In the case of SRS, the 
read length is approximately 100 bp, rendering large tandem 
repeats difficult to be mapped accurately to the genome. On 
the other hand, LRS allows the detection of repeated sequenc-
es in large regions, which makes it suitable for tandem repeat 
analysis (Fig. 1B). In a study by Mizuguchi et al. [18], LRS was 
used to precisely investigate the causative variants in a benign 
adult familial myoclonus epilepsy (BAFME) family. As a result, 
they found a 4,661 bp heterozygous repeat insertion in the 
SAMD12 intron region. Also, LRS from ONT was used to iden-
tify repeat expansions. With this approach, Sone et al. [19] 
confirmed that the 5’ GCC repeat expansion in NOTCH2NLC 
was found only in neuronal intranuclear inclusion disease 
family members. These findings highlight the advantages of 
using LRS technology to provide deeper insight into complex 
diseases through accurate detection of tandem repeats and re-
peat expansions.

TRANSPOSABLE ELEMENTS

Transposable elements (TEs) have also been reported to 
play a role in rare diseases [20]. TEs are also known as “jump-
ing genes,” and as the name suggests, they are mobile DNA se-
quences that can move to different genomic locations. They 
can be found throughout all living organisms and are another 
source of evolution and genome reorganization. TE integra-
tion in the protein-coding region can induce gene dysfunction, 

while integration in the intronic region can induce alternative 
splicing events and in turn, abnormal gene expression [21]. A 
constraint of short-read WGS is that the generated reads are 
too short to fully cover each TE copy. Thus, only single nucleo-
tide polymorphisms within a TE, or partial reads containing 
TE and genome junctions, can be mapped. Conversely, LRS 
overcomes this obstacle by generating reads of sufficient length 
to identify TE insertions (Fig. 1C) [22]. Zhou et al. [23] identi-
fied 90 L1Hs insertions in human cell lines that were not de-
tected by previous SRS studies by developing computational 
software (PALMER) to detect LINE-1 insertions from PacBio 
reads. Moreover, LRS can be used in conjunction with other 
genomic analysis methods for TE analysis. Aneichyk et al. [24] 
also used multiple approaches, including PacBio SMRT in a X-
Linked Dystonia-Parkinsonism (XDP) cohort to analyze the 
cause of the disease. They identified an SVA (SINE-VNTR-Alu) 
insertion in the TAF1 gene that was exclusive to the XDP pro-
bands. In a different study, Fernández-Suárez et al. [25] em-
ployed LRS to detect an Alu retrotransposon insertion in the 
EYS gene from patients with retinitis pigmentosa, which was 
not discovered with their previous targeted SRS results. With 
LRS, researchers are able to discern genomic changes that span 
the genome in broad segments, which can contribute to fully 
characterizing presently ambiguous regions of the genome.

TRANSCRIPT ISOFORMS

Transcript isoforms, which are different versions of mRNA 
produced from the same gene, represent another factor con-
tributing to the genetic alterations that can lead to rare diseases 
[26]. These mRNA sequences are produced as a result of alter-
native splicing events, which can cause the synthesis of abnor-
mal transcripts or change the expression levels of otherwise 
normally produced genes. With SRS, identifying and analyzing 
the transcript isoforms coded by genes usually required the 
prediction of these various isoforms using average read depth. 
In contrast, LRS can sequence whole RNA molecules, and can 
detect novel isoforms, along with their expression levels (Fig. 
1D). In a study by Stergachis et al. [27], they performed full-
length long-read isoform sequencing to establish the conse-
quence of a MFN2 intron branch point variant. They con-
firmed that the variant produces five altered splicing transcripts 
that disrupt the open reading frames responsible for Charcot-
Marie-Tooth disease, axonal, type 2A (CMT2A). This illustrates 
that LRS is not limited to DNA and can be applied to research 
that requires detection of transcriptomic isoforms.
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CONCLUSION

In this review article, we introduced the ongoing research on 
the applications of LRS technology in effectively identifying 
genomic variations that previously could not be detected with 
conventional methods. While acknowledging the current limi-
tations of LRS, it is important to recognize the advantages that 
are accompanied. With further improvements in the LRS plat-
form and bioinformatic methodology, we believe that this 
technology has the potential to expand our knowledge on the 
complex mechanisms underlying rare diseases, ultimately 
aiming at improved patient diagnosis and appropriate treat-
ment.
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