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INTRODUCTION

Rare diseases, typically defined as conditions affecting fewer than 1 in 2,000 in-
dividuals, represent a significant global health challenge. It is estimated that over 
400 million people worldwide suffer from such conditions, with approximately 
80% of these diseases believed to be genetic in origin [1,2]. The Online Mende-
lian Inheritance in Man (OMIM) database currently documents over 6,300 dis-
tinct disease-gene associations, highlighting the genetic diversity and complexity 
inherent in rare diseases.

In South Korea, rare diseases are defined more narrowly, where conditions af-
fecting fewer than 20,000 individuals are considered rare [3]. Among these, dis-
eases with fewer than 200 patients are classified as extremely rare. The limited 
number of patients, along with the requirement of specialized knowledge for di-
agnosis, often complicates the identification and management of these diseases. 
As of November 2023, approximately 1,250 diseases are officially recognized as 
rare in South Korea, where the national healthcare system provides coverage for 
the associated medical expenses. This underscores the significant burden that rare 
diseases place on patients and healthcare systems alike, given the persistent health 
risks and complications associated with these conditions.

Currently, the most widely used next-generation sequencing (NGS) technology 
for diagnosis of rare diseases is whole-exome sequencing (WES). This method tar-
gets the exonic region, which contains the protein-coding sequences of the ge-
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Rare diseases, largely driven by genetic factors, present significant diagnostic challenges due to their complex genomic varia-
tions. Traditional short-read sequencing methods, such as whole-exome sequencing and whole-genome sequencing, are widely 
used to detect genomic alterations in a time- and cost-effective manner. However, some rare conditions are often left undiag-
nosed due to the technical limitations of current sequencing platforms. To overcome these limitations, long-read sequencing 
(LRS) technology has been applied to various fields of clinical research including rare diseases. With LRS, researchers are able to 
accurately characterize complex variants such as structural variations, tandem repeats, transposable elements, and transcript 
isoforms. This review article explores the current applications of LRS in rare disease research, highlighting its potential in identify-
ing previously elusive causative variants in undiagnosed rare diseases.
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nome. Although the exome only comprises 1%–2% of the ge-
nome, it contains 85% of genetic variants that have a high im-
pact on the pathogenicity of diseases [4]. In addition, WES al-
lows for a high sequencing depth in an accurate and cost-effec-
tive manner compared to other sequencing platforms, en-
abling the reliable detection of genetic variants such as single 
nucleotide variants (SNVs) and short insertions and deletions 
(INDELs). Moreover, data generated by WES is relatively small 
and manageable, greatly reducing computational burden and 
time required for analysis. These factors make WES meritable 
for researchers with large patient cohorts and even make trio 
analysis feasible, which is very important in identifying caus-
ative variants. 

Despite the advantages described above, WES is limited to 
the exonic region; therefore, non-coding variants and structur-
al variations (SVs) in the intronic regions cannot be detected. 
Hence, whole-genome sequencing (WGS) is used when ge-
nome-wide analysis is necessary. SNVs and INDELs in the 
non-coding regions in addition to SVs can be detected with 
WGS, which can make this sequencing platform more appro-
priate than WES depending on the aim of the study. However, 
short-read WGS produces sequence reads with an average 
length of 100 bp. As such, analysis of complex SVs or repeat 
regions with lengths over 100 bp is still challenging.

Diagnosis rates using WES or WGS data range from 25%–
50%, yielding slightly better rates with WGS [5,6]. In other 
words, roughly 50% of patients remain undiagnosed. Among 
many factors behind the difficulties hindering diagnosis, the 
technical limitations of short-read sequencing (SRS) contrib-
ute considerably by limiting the effectiveness in detecting and 
analyzing complex genetic variations. To address these issues, 
developments in long-read sequencing (LRS) have emerged 
recently and attempts to identify previously undetected caus-
ative variants have increased using this technology. 

As of date, the most prevalent LRS platforms have been de-
veloped by PacBio and Oxford Nanopore Technologies 
(ONT), where each has its distinctions. PacBio’s LRS technolo-
gy is known for its overall high data quality, as molecules can 
be sequenced multiple times to generate low-error data [7]. 
However, LRS data generation with PacBio has a higher cost 
and requires larger amounts of higher-quality DNA [8]. On 
the other hand, ONT’s LRS technology provides a higher 
throughput at a lower cost, which is an important factor for 
improving the efficiency and scalability of research projects. 
Furthermore, longer mappable reads are achievable with ONT, 
but generally shorter reads are generated compared to PacBio 

[9]. As such, both technologies have their differences and re-
searchers should choose LRS platforms that are the most ap-
propriate depending on the objectives of their research. 

The introduction of LRS technology has enabled the charac-
terization of complex SVs, repeat regions, and phases that were 
previously difficult to identify, as well as the characterization 
of gene isoforms [10]. On the other hand, LRS also comes 
with certain limitations, including high cost and low accuracy 
per read. Furthermore, current bioinformatic analysis methods 
for LRS are limited and are still under development. Neverthe-
less, LRS definitely has its strengths, and various efforts are 
continuously being made to minimize error and improve 
analysis techniques. With advancements in this technology, 
LRS has significant potential to help characterize the complex 
genomic changes occurring in rare diseases and accurately di-
agnose affected patients.

This review article aims to introduce LRS technology and 
outline the applications of LRS in identifying causative vari-
ants of mendelian disorders or rare diseases.

COMPLEX STRUCTURAL VARIATIONS 

Structural variations (SVs), which are large genomic altera-
tions with sizes ranging from 50 bp to over 1 kb, are common-
ly associated with genetic diseases [11]. These alterations in-
clude inversions, translocations, insertions, deletions and can 
have a significant impact on a gene’s function. Due to their siz-
es, accurately depicting large SVs with SRS serves to be quite 
difficult. Furthermore, current NGS techniques have limited ca-
pabilities in detecting SVs in regions with complex or repeated 
sequences. To address this problem, researchers have adopted 
LRS to characterize these alterations effectively (Fig. 1A). With 
LRS, it is possible to survey longer portions of the genome and 
in turn, observe SVs with higher accuracy [12]. Merker et al. 
[13] performed low-coverage genome LRS to identify SVs that 
could not be detected using SRS in a patient with multiple 
neoplasia and cardiac myxomata. As a result, they identified 
over 6,000 insertions and deletions larger than 50 bp, includ-
ing a pathogenic 2,184 bp deletion overlapping with an exon 
of the PRKAR1A gene, which is associated with autosomal 
dominant Carney complex. Similar studies have been per-
formed using PacBio LRS as well as Nanopore LRS techniques. 
In a study by Damián et al. [14], LRS was performed on two 
patients with congenital aniridia for whom causative variants 
were not identified through SRS analysis. This approach re-
vealed pathogenic SVs in the PAX6 gene responsible for con-
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genital aniridia, including a 4.9 Mb inversion in intron 7 and a 
t(6;11) balanced translocation. In another study, long-read 
WGS was performed on a patient suspected of having autoso-

mal recessive glycogen storage disease type Ia (GSD-Ia) in 
whom the causative variant had not been properly identified 
by WES. While WES had detected only a single heterozygous 

Fig. 1. Identifying causative variants using short-read sequencing vs. long-read sequencing. (A) Detection of complex structural varia-
tions. Diagram showing an example of sequencing complex structural variations. The black and light red arrows indicate reads mapped 
to the complex structural variation. (B) Detection of tandem repeats. The colored regions indicate repeats occurring in the genome and 
different colors were used to differentiate each repeat unit. The light red and light blue lines show reads mapped to the repeat region. (C) 
Detection of transposable elements. The red regions indicate transposable elements. The light red lines show reads mapped to the 
transposable element region. (D) Detection of transcript isoforms. The black regions are reads mapped to the transcripts.

A

B

C

D
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pathogenic variant in the G6PC gene, LRS revealed the pres-
ence of a 7.1 kb deletion covering two exons on the other allele 
(Miao et al.) [15]. Furthermore, there are studies where LRS 
has been performed on a larger cohort as opposed to a few 
samples. Miller et al. conducted targeted LRS on 30 patients 
with previously identified causative variants and 10 patients 
without an accurate diagnosis. They successfully confirmed the 
previously identified pathogenic SVs and further detected 
pathogenic/likely pathogenic variants in 6 out of the 10 undi-
agnosed patients [16]. These studies demonstrate the potential 
of LRS in characterizing complex SVs, especially those that 
could not be identified with conventional SRS methods.

TANDEM REPEATS

Tandem repeats, which are short copies of DNA sequences 
that are repeated multiple times in the genome, are highly 
polymorphic and are an important source of genetic variation 
[17]. The size of these repeated sequences range from a few 
base pairs to hundreds of base pairs. In the case of SRS, the 
read length is approximately 100 bp, rendering large tandem 
repeats difficult to be mapped accurately to the genome. On 
the other hand, LRS allows the detection of repeated sequenc-
es in large regions, which makes it suitable for tandem repeat 
analysis (Fig. 1B). In a study by Mizuguchi et al. [18], LRS was 
used to precisely investigate the causative variants in a benign 
adult familial myoclonus epilepsy (BAFME) family. As a result, 
they found a 4,661 bp heterozygous repeat insertion in the 
SAMD12 intron region. Also, LRS from ONT was used to iden-
tify repeat expansions. With this approach, Sone et al. [19] 
confirmed that the 5’ GCC repeat expansion in NOTCH2NLC 
was found only in neuronal intranuclear inclusion disease 
family members. These findings highlight the advantages of 
using LRS technology to provide deeper insight into complex 
diseases through accurate detection of tandem repeats and re-
peat expansions.

TRANSPOSABLE ELEMENTS

Transposable elements (TEs) have also been reported to 
play a role in rare diseases [20]. TEs are also known as “jump-
ing genes,” and as the name suggests, they are mobile DNA se-
quences that can move to different genomic locations. They 
can be found throughout all living organisms and are another 
source of evolution and genome reorganization. TE integra-
tion in the protein-coding region can induce gene dysfunction, 

while integration in the intronic region can induce alternative 
splicing events and in turn, abnormal gene expression [21]. A 
constraint of short-read WGS is that the generated reads are 
too short to fully cover each TE copy. Thus, only single nucleo-
tide polymorphisms within a TE, or partial reads containing 
TE and genome junctions, can be mapped. Conversely, LRS 
overcomes this obstacle by generating reads of sufficient length 
to identify TE insertions (Fig. 1C) [22]. Zhou et al. [23] identi-
fied 90 L1Hs insertions in human cell lines that were not de-
tected by previous SRS studies by developing computational 
software (PALMER) to detect LINE-1 insertions from PacBio 
reads. Moreover, LRS can be used in conjunction with other 
genomic analysis methods for TE analysis. Aneichyk et al. [24] 
also used multiple approaches, including PacBio SMRT in a X-
Linked Dystonia-Parkinsonism (XDP) cohort to analyze the 
cause of the disease. They identified an SVA (SINE-VNTR-Alu) 
insertion in the TAF1 gene that was exclusive to the XDP pro-
bands. In a different study, Fernández-Suárez et al. [25] em-
ployed LRS to detect an Alu retrotransposon insertion in the 
EYS gene from patients with retinitis pigmentosa, which was 
not discovered with their previous targeted SRS results. With 
LRS, researchers are able to discern genomic changes that span 
the genome in broad segments, which can contribute to fully 
characterizing presently ambiguous regions of the genome.

TRANSCRIPT ISOFORMS

Transcript isoforms, which are different versions of mRNA 
produced from the same gene, represent another factor con-
tributing to the genetic alterations that can lead to rare diseases 
[26]. These mRNA sequences are produced as a result of alter-
native splicing events, which can cause the synthesis of abnor-
mal transcripts or change the expression levels of otherwise 
normally produced genes. With SRS, identifying and analyzing 
the transcript isoforms coded by genes usually required the 
prediction of these various isoforms using average read depth. 
In contrast, LRS can sequence whole RNA molecules, and can 
detect novel isoforms, along with their expression levels (Fig. 
1D). In a study by Stergachis et al. [27], they performed full-
length long-read isoform sequencing to establish the conse-
quence of a MFN2 intron branch point variant. They con-
firmed that the variant produces five altered splicing transcripts 
that disrupt the open reading frames responsible for Charcot-
Marie-Tooth disease, axonal, type 2A (CMT2A). This illustrates 
that LRS is not limited to DNA and can be applied to research 
that requires detection of transcriptomic isoforms.
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CONCLUSION

In this review article, we introduced the ongoing research on 
the applications of LRS technology in effectively identifying 
genomic variations that previously could not be detected with 
conventional methods. While acknowledging the current limi-
tations of LRS, it is important to recognize the advantages that 
are accompanied. With further improvements in the LRS plat-
form and bioinformatic methodology, we believe that this 
technology has the potential to expand our knowledge on the 
complex mechanisms underlying rare diseases, ultimately 
aiming at improved patient diagnosis and appropriate treat-
ment.
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INTRODUCTION

A study identified a 4.78 Mb familial heterozygous microdeletion at 9q31.2-
q31.3, segregating across three generations. This deletion, encompassing 26 genes, 
is associated with delayed puberty in both sexes between ages 13 and 16. Through 
genomic analysis, the critical region for delayed puberty was refined to a 3.7 Mb 
spanning 9q31.3 to 9q32 [1]. Taking advantage of an overlooked de novo balanced 
translocation in a Kallmann syndrome patient [2]—where delayed puberty is a 
hallmark feature—we further narrowed the candidate region to 9q31.3 and iden-
tified two potential Kallmann syndrome genes based on gene expression patterns.

SEARCHING FOR THE MISSING KALLMANN SYNDROME 
GENE

Positional cloning is a powerful method for identifying disease genes, particu-
larly when it capitalizes on chromosomal rearrangements such as deletions and 
balanced translocations. These rearrangements serve as invaluable tools to pin-
point the exact location of disease-causing genes. By providing clues about the 
chromosomal position where the gene resides, it enables researchers to focus on a 
specific genomic area and use it as a starting point to clone and identify the gene.

Deletions, which involve the loss of a specific chromosomal segment, are par-
ticularly informative. When a deletion is associated with a particular disease or 
phenotype, it strongly suggests that the missing genomic region contains the dis-
ease-causing gene(s).

Balanced translocations, on the other hand, involve the exchange of segments 
between two different chromosomes without any loss or gain of genetic material. 

Searching for the Missing Kallmann Syndrome Gene at 
9q31.3
Hyung-Goo Kim1, Sang Hoon Lee1, Lawrence C. Layman2,3, Mi-Hyeon Jang1
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Despite this genomic balance, about six percent of carriers of 
balanced translocations exhibit abnormal phenotypes due to 
gene disruption at the breakpoints or dysregulation caused by 
position effects [3]. This dysregulation occurs when the separa-
tion of a gene from its cis-regulatory elements results in re-
duced gene expression [4]. By mapping these breakpoints, re-
searchers can precisely identify candidate genes implicated in 
the disorder.

Contiguous deletion syndrome represents a genetic condi-
tion caused by a deletion of a segment of DNA that spans 
multiple genes located next to each other on a specific chro-
mosome. The loss of these genes can lead to a variety of symp-
toms, depending on which genes are affected. Because multi-
ple genes are involved, the resulting clinical features can be 
complex and variable, often including developmental delays, 
intellectual disabilities, congenital anomalies, and other dis-
tinctive phenotypes. 

Comparative genomic mapping analyzes the chromosomal 
regions where microdeletions occur in different individuals 
who share a specific phenotype. By comparing these microde-
letions, it is possible to identify overlapping genomic regions 
that are consistently missing across multiple cases. This over-
lapping region is considered critical because it likely contains 
the gene or genes responsible for the shared phenotype [5].

The process typically starts with identifying individuals who 
have similar clinical features or diseases and then performing 
detailed genetic analyses to map the precise locations of their 
chromosomal deletions. By narrowing down to the smallest 
common region deleted across these individuals, candidate 
genes within this region that might be causing the phenotype 
can be identified. This method has been successfully utilized 
to identify disease genes associated with various genetic syn-
dromes, particularly by complementing next-generation se-
quencing, where interpreting the pathogenicity of variants of 
uncertain significance (VUS) remains challenging.

A novel 4.78 Mb familial heterozygous microdeletion segre-
gating with the phenotype in three generation and encom-
passing distal end of 9q31.2 and entire 9q31.3 has been pub-
lished in 2019. It contains 26 genes and is characterized by fa-
tigue, muscle cramps, short stature, delayed puberty, sensori-
neural hearing loss (SNHL), and mild developmental delay. 
Male patients showed small testes, low testosterone levels and 
patients of both sexes showed delayed puberty from age 13 to 
16 years old. Among the 25 genes within this genomic region, 
the authors proposed two candidate genes that may be associ-
ated with delayed puberty. They suggested that UGCG, located 
at 9q31.3, could be significant due to its role in the maturation 
of sperm-specific glycosphingolipids. Deletion of UGCG in 

Fig. 1. The 3.7 Mb candidate gene region for Kallmann syndrome. This genomic region, refined by two heterozygous deletions, spans 
20 genes located from 9q31.2 to 9q31.3 (GRCh38/hg38). Arrows indicate the transcriptional direction of each gene. The blue box rep-
resents the BAC clone RP11-151F5, identified by FISH to span the genomic breakpoint. This clone overlaps with a single gene PAL-
M2AKAP2, shown in green, indicating that this gene is directly disrupted by the genomic breakpoint at 9q31.3 in a Kallmann syndrome 
patient with t(7;9)(p14.1;q31.3)dn. Two prime candidate genes for Kallmann syndrome are highlighted in red, while two additional genes 
discussed in this review and in the literature are shown in yellow.

3.7 Mb Kallmann syndrome candidate gene region
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mouse germ cells led to an age-dependent reduction in testicu-
lar mass, tubular atrophy, and arrested spermatogenesis. Addi-
tionally, they highlighted ZNF483 at 9q31.3 as another poten-
tial candidate (Fig. 1), noting its association with the age at 
menarche in women [1].

Through comparative genomic mapping with another mi-
crodeletion case, a critical overlapping region of 3.7 Mb, span-
ning 9q31.3 to 9q32 (chr9: 107,909,771-111,605,520, hg38/
chr9: 109,711,873-113,407,621, hg18), has been identified (Fig. 
1). This region, which contains 20 genes, is expected to be as-
sociated with short stature, SNHL, pubertal delay, and devel-
opmental delay [1].

However, a de novo balanced translocation t(7;9)(p14.1;q31. 
3) in a patient with Kallmann syndrome, published in 2007, 
could significantly narrow down the candidate gene region at 
9q31.3 for delayed puberty [2]. Kallmann syndrome is a genet-
ic condition characterized by delayed or absent puberty and 
an impaired sense of smell (anosmia). It results from a failure 
in the development or migration of neurons responsible for 
producing gonadotropin-releasing hormone (GnRH), leading 
to insufficient production of gonadotropins and sex hormones 
with resultant delayed puberty [6]. In the cytogenetic charac-
terization of a patient with KS and bone anomalies, demon-
strating a balanced de novo translocation between chromo-
some 7 and chromosome 9, the authors hypothesized that the 
disease gene is located either 7p14.1 or 9q31.3 genomic break-
points. Based on the delayed puberty found in two heterozy-
gous deletions and its refined region 3.7 Mb, spanning 9q31.3 
to 9q32, which encompasses 9q31.3, it is highly likely the dis-
ease gene for Kallmann syndrome should be at or in the vicin-
ity of 9q31.3 breakpoint [1,7].

Using Bacterial Artificial Chromosomes (BACs) in a Fluores-
cent In Situ Hybridization (FISH) experiment, they found 
a176 kb BAC clone, RP11-151F5, located at 9q31.3. This clone 
resides within the extended and renamed gene PALM2AKAP2 

(previously annotated as separate genes, PALM2 and AKAP2) 
[2]. The BAC spans exons 7 to 10 of PALM2AKAP2 (NM_007 
203), indicating that the genomic breakpoint disrupts this 
gene (Fig. 1). Mutation screening in 98 Kallmann syndrome 
patients revealed no mutations, only two rare polymorphisms. 
This gene is expressed in olfactory epithelium and olfactory 
bulb [2], which are critical for the sense of smell and the mi-
gration of GnRH neurons during embryonic development. 
The olfactory epithelium contains sensory neurons that detect 
odors, and these neurons send signals to the olfactory bulb. 
During development, GnRH neurons originate in the olfactory 

epithelium and migrate to the hypothalamus via the olfactory 
bulb. Disruption in this pathway can lead to anosmia (loss of 
smell) and hypogonadotropic hypogonadism, the key features 
of Kallmann syndrome.

However, neither PALM2 nor AKAP2 is expressed in the tes-
tis, which is not necessarily incompatible with Kallmann syn-
drome, the genes of which are mostly expressed in the hypo-
thalamus and/or pituitary, and the expression pattern of PAL-

M2AKAP2 is not available in the GTEx database (https://gtex-
portal.org/home/). Among the genes in the vicinity of PAL-

M2AKAP2 at 9q31.3, three genes-TXNDC8, ACTL7A, and  
ACTL7B-are notably predominantly expressed in the testis. 
TXNDC8 is located 131 kb distal to PALM2AKAP2, while ACT-

L7A (Actin-like 7A) and ACTL7B (Actin-like 7B) are 777 kb 
and 785 kb proximal, respectively (Fig. 1). In GTEx, the medi-
an Transcripts Per Million (TPM) for TXNDC8 is 12.57, ACT-

L7A is 543.2, and ACTL7B is 301.5. In a Northern blot analy-
sis, ACTL7A is expressed across various adult tissues, with the 
highest expression observed in testis. In contrast, the ACTL7B 
transcript was detected exclusively in the testis, with a lesser ex-
tent in the prostate [8]. 

The protein encoded by this gene is a member of the actin-
related proteins (ARPs) family, which shares significant amino 
acid sequence similarity with conventional actins [9]. Both ac-
tins and ARPs feature an actin fold, an ATP-binding cleft, 
which is highly conserved in ACTL7A and ACTL7B, suggesting 
potential ATPase activity. ARPs are involved in various cellular 
processes, including vesicular transport, spindle orientation, 
nuclear migration and chromatin remodeling [8]. ACTL7A 

and ACTL7B are intronless genes located approximately 6 kb 
apart at 9q31.3, in a head-to-head orientation with opposite 
transcription directions. 

A homozygous missense mutation (p.Ala245Thr in NP_ 
006678.1) in ACTL7A has been linked to infertility and early 
embryonic arrest in two consanguineous brothers [10], while 
compound heterozygous mutations (Arg155Ter and Gly362 
Arg) have been found in a non-consanguineous male with in-
fertility [11]. Additional cases include a homozygous (Arg-
373Cys) and compound heterozygous mutations (Arg373His 
and Gly402Ser) identified in both consanguineous and non-
consanguineous males with infertility [12]. Furthermore, a 
nonsense homozygous (Ser49Ter) and a missense homozy-
gous mutations (Asp75Ala) were identified in two indepen-
dent consanguineous males [13,14]. In a consanguineous Pak-
istani family with eight infertile men, a frameshift homozy-
gous mutation (Glu50Alafs*6) was identified [15]. To date, no 
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mutations in ACTL7B have been reported in humans with re-
productive phenotype.

Collectively, therefore, dysregulation of ACTL7A or ACTL7B 
due to position effect in a balanced translocation patient [4] 
or its haploinsufficiency in two heterozygous deletion patients 
may contribute to Kallmann syndrome. If either of these two 
genes is dysregulated due to a position effect, qRT-PCR analy-
sis using blood RNA from a Kallmann syndrome patient with 
a balanced translocation would show a reduced transcript level 
compared to a control family member without chromosomal 
anomalies, assuming that these genes are expressed in blood.

Given that bi-allelic mutations in ACTL7A cause male infer-
tility, it is unlikely that a heterozygous deletion or dysregula-
tion of this gene in balanced translocation would lead to Kall-
mann syndrome. If this were the case, the parents of infertile 
males with bi-allelic mutations, who should be obligate carri-
ers of the heterozygous mutations, would themselves exhibit 
delayed puberty or Kallmann syndrome, which was not ob-
served. Moreover, due to their reproductive phenotype, they 
would likely face challenges in having children. This further 
suggests that a heterozygous deletion or dysregulation of the 
ACTL7A gene is unlikely to cause Kallmann syndrome. Screen-
ing for mutations in these two genes in Kallmann syndrome 
patients would help confirm their pathogenic roles in this re-
productive phenotype.

CONCLUSION

By comparing the genomic positions of genes within the re-
fined 3.7 Mb heterozygous region at 9q31.3 to 9q32 with those 
at the 9q31.3 breakpoint of a balanced translocation t(7;9)
(p14.1;q31.3), we identified two candidate genes for Kallmann 
syndrome, ACTL7A and ACTL7B, at 9q31.3 based on their ex-
pression patterns.
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INTRODUCTION

Diamond-Blackfan Anemia (DBA) is a congenital bone marrow (BM) failure 
syndrome characterized by increased susceptibility of erythroid progenitors and 
precursors to apoptosis, resulting in impaired erythropoiesis and subsequent 
erythropoietic failure [1]. The incidence of DBA is estimated to be approximately 
7 cases per million live births, with most diagnoses occurring within the first year 
of life [1]. Clinically, DBA presents with congenital malformations in approxi-
mately 50% of patients, including craniofacial, skeletal, genitourinary, cardiac, 
and ophthalmologic anomalies [2]. Laboratory findings typically reveal normo-
chromic macrocytic anemia, reticulocytopenia, and reduced levels of erythroid 
precursors in the BM, whereas other hematopoietic lineages are usually unaffect-
ed [2].

This disorder is primarily caused by heterozygous mutations in ribosomal pro-
tein (RP) genes, leading to defective ribosome biogenesis and ribosomal RNA 
(rRNA) processing [3]. Recent studies using next-generation sequencing have 
identified additional RP and non-RP genes, such as GATA1 [4], TSR2 [5], and 
HEATR3 [6]. RP gene mutations explain 50–60% of DBA cases, and mutations in 
non-RP genes account for less than 1% [3]. Approximately 20%–25% of DBA cas-
es remain genetically unexplained [3]. The most commonly affected gene, RPS19, 
accounts for approximately 25% of DBA cases [7]. These findings have significant-
ly expanded our understanding of the genetic heterogeneity and molecular patho-
physiology of DBA, paving the way for more accurate diagnosis and potential new 
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therapeutic strategies. In this review, we focus on the genetic 
framework of DBA and offer insights into the associated muta-
tions and their roles in the pathogenesis of the disease. The 
genes are listed in the order of their discovery.

 
RP genes and p53 pathway activation

Approximately 75% of DBA cases are caused by loss-of-
function mutations in RP genes, typically affecting only one 
allele [3]. Ribosomes, which are composed of the 40S small 
subunit (containing RPS proteins) and the 60S large subunit 
(containing RPL proteins), are essential for translating mRNA 
into proteins, a process crucial for cell function and growth [8]. 
Mutations in RPS or RPL genes compromise functional ribo-
some production, resulting in defective rRNA processing and 
impaired subunit assembly [9,10]. RPS gene mutations in the 
40S subunit disrupt 18S rRNA processing, leading to incom-
plete or nonfunctional small ribosomal subunits [10]. In the 
60S subunit, RPL gene mutations impair the maturation of 
28S and 5.8S rRNA, thus disrupting the assembly of the large 
subunit [9]. Although ribosomes are essential for all cell types, 
erythroid progenitor cells are particularly sensitive to defects in 
ribosome biogenesis [11]. This heightened sensitivity is due to 
the increased demand for protein synthesis during red blood 
cell (RBC) production [11]. Impaired ribosome production 
triggers a cellular stress response, particularly through the acti-
vation of the p53 pathway [11]. In DBA, RP mutations lead to 
the accumulation of free RPs that bind to and inhibit MDM2, 
a negative regulator of p53 [11]. This inhibition stabilizes and 
activates p53, resulting in increased apoptosis of erythroid 
progenitor cells in the BM [11].

40S Small Ribosomal Subunit (RPS genes)
RPS19 (Autosomal dominant [AD])

The RPS19 gene is the first gene identified in relation to 
DBA and remains the most commonly mutated gene among 
affected individuals [12]. Draptchinskaia et al. [13] reported 
that in a female patient with DBA and a de novo balanced 
translocation t(X;19)(p21;q13), the RPS19 gene was disrupted 
within its third intron. In a study screening for RPS19 muta-
tions in 40 unrelated individuals with DBA, Draptchinskaia et 
al. [13] identified nine distinct mutations in 10 patients. All 
individuals with mutations were heterozygous for these altera-
tions, and no additional sequence variations were observed in 
the protein-coding region [13]. Willig et al. [14] examined 190 
patients with DBA and discovered RPS19 sequence alterations 
in approximately 24% of cases. Mutations in RPS19 critically 

disrupt the maturation of the 3́  end of 18S rRNA, which is es-
sential for the formation of the 40S ribosomal subunit [10]. 
This disruption leads to defects in ribosome assembly and ul-
timately activates the p53 pathway, resulting in apoptosis and 
impaired differentiation of erythroid progenitor cells [15].

RPS24 (AD)
Gazda et al. [16] conducted whole-exome sequencing (WES) 

and genetic linkage analysis on a cohort of patients with DBA 
and identified multiple mutations in RPS24, which interfered 
with its function and ultimately resulted in the failure of RBC 
production. This study emphasized the importance of ribo-
somal dysfunction in DBA, positioning RPS24 alongside other 
RP genes involved in the disease [16]. The clinical features of 
patients with RPS24 mutations typically include macrocytic 
anemia, with some cases presenting with congenital anoma-
lies, such as growth retardation and craniofacial malforma-
tions [16]. Additionally, Choesmel et al. [17] demonstrated 
that RPS24 mutations impair the maturation of 18S rRNA, a 
critical step in the formation of functional ribosomes, leading 
to defects in ribosome biogenesis and the disruption of eryth-
ropoiesis. Their experiments further revealed that RPS24 muta-
tions cause delayed pre-rRNA processing and failure to proper-
ly assemble the small ribosomal subunit [17]. Furthermore, 
this study highlights the functional interaction between RPS19 
and RPS24, suggesting that defects in multiple RPs may con-
tribute to the disease’s pathogenesis [17].

RPS17 (AD)
Cmejla et al. [18] discovered a de novo mutation in the 

RPS17 gene in patients with DBA, macrocytic anemia, cranio-
facial dysmorphism, thumb/neck anomalies, congenital heart 
defects, urogenital malformations, and short stature [18]. 
Functional analyses have demonstrated that these mutations 
interfere with proper ribosomal assembly and prevent efficient 
translation, ultimately leading to the failure of RBC produc-
tion [18]. The study further highlighted that a mutation in the 
RPS17 gene, particularly affecting the start codon, significantly 
disrupts protein translation, thereby impacting ribosomal bio-
genesis [18].

RPS7 (AD)
Watkins-Chow et al. [19] demonstrated that RPS7 muta-

tions in mouse models caused developmental abnormalities, 
including reduced body size and neuroanatomical defects. In-
terestingly, unlike human RPS7 mutations linked to anemia in 
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DBA, mouse models do not exhibit blood cell defects, high-
lighting potential species-specific differences in RP function 
[19]. Akram et al [20]. recently reported a novel RPS7 variant 
that causes aberrant splicing, leading to DBA in mother and 
daughter. The mother experienced spontaneous remission of 
transfusion-dependent anemia at the age of 13 years, while her 
daughter was born with an occipital meningocele and later di-
agnosed with DBA [20]. This study expands the genotype-phe-
notype correlations in DBA, linking RPS7 haploinsufficiency 
to hematologic abnormalities as well as neuroanatomical de-
fects, such as meningocele [20].

RPS10 (AD)
Doherty et al. [21] identified three distinct mutations in 

RPS10 in five patients: missense, nonsense, and frameshift mu-
tations. These mutations affect the production of rRNA, partic-
ularly 18S rRNA, which is essential for the assembly of ribo-
somal small subunits [21]. Further analysis using pre-rRNA 
processing in patient-derived cells revealed that mutations in 
RPS10 led to an abnormal accumulation of 18S-E pre-rRNA, 
impairing ribosomal biogenesis [21]. This is consistent with 
observations from knockdown studies in HeLa cells, in which 
reduced expression of RPS10 caused similar defects in rRNA 
maturation, ultimately disrupting normal ribosomal function 
[21]. This study also used high-throughput sequencing to con-
firm that loss-of-function mutations in RPS10 are major fac-
tors in DBA pathogenesis [22].

RPS26 (AD)
Doherty et al. [21] identified two unrelated DBA families 

with RPS26 mutations, one affecting mRNA splicing and the 
other causing protein truncation. These mutations impair ri-
bosome biogenesis by accumulating 18S-E pre-rRNA, leading 
to defective ribosome function and disrupted erythropoiesis, 
which contributes directly to the pathogenesis of DBA [21]. 
Gripp et al. [5] also reported two unrelated DBA families that 
carried RPS26 mutations, one of which affected mRNA splic-
ing, leading to improper gene expression, whereas the other 
caused protein truncation, disrupting ribosome biogenesis. 
These mutations are linked to defective ribosome assembly, a 
hallmark of DBA pathophysiology that impairs RBC produc-
tion [5]. 

RPS29 (AD)
Mirabello et al. [23] identified two novel non-synonymous 

mutations in RPS29 in two large families affected by DBA. 

These mutations result in the haploinsufficiency of RPS29, 
leading to defects in pre-rRNA processing and impaired ribo-
some biogenesis [23]. Functional studies using a zebrafish 
model showed that mutant RPS29 failed to rescue defective 
erythropoiesis, confirming the pathogenic role of these muta-
tions in DBA [23].

RPS28 (AD)
Gripp et al. [5] identified RPS28 as a novel gene implicated 

in DBA and mandibulofacial dysostosis (MFD), including mi-
crotia or cleft palate, through WES. Two unrelated probands 
carried a de novo mutation affecting the start codon of the 
RPS28 gene [5]. This mutation severely disrupts protein trans-
lation, leading to haploinsufficiency and impaired ribosome 
biogenesis [5]. This study also noted that experimental deple-
tion of RPS28 using siRNA resulted in reduced levels of other 
RPs, similar to the knockdown of RPS19 [5].

RPS15A (AD)
Ikeda et al. [24] identified a splicing mutation in RPS15A 

(c.213G> A, p.K71K) in a DBA-affected family that caused ab-
errant splicing and production of a truncated transcript. The 
proband was diagnosed with DBA at 3 months of age, and BM 
study revealed severe erythroid hypoplasia (0%) with other-
wise normal cellularity [24]. She had a total anomalous pul-
monary venous connection and bilateral acetabular dysplasia 
[24]. There was a family history of anemia, as both her mother 
and older sister had experienced anemia during childhood, al-
though there were no physical abnormalities [24]. The pro-
band responded to corticosteroid therapy and eventually be-
came steroid-independent [24]. Functional studies using 
CRISPR/Cas9 in human erythroid cells have shown that RP-

S15A haploinsufficiency disrupts 18S-E pre-rRNA processing 
and impairs 40S subunit assembly [24]. Zebrafish models fur-
ther confirmed that rps15a knockdown leads to developmental 
defects, particularly impaired erythropoiesis, highlighting its 
role in DBA pathogenesis [24].

RPS27 (AD)
Wang et al. [25] identified loss-of-function mutations in the 

RPS27 gene through WES in patients with DBA. A single nu-
cleotide deletion in the RPS27 gene led to a frameshift muta-
tion, producing a premature stop codon, which causes defec-
tive ribosome biogenesis and impairs the pre-rRNA processing 
necessary for normal RBC production [25]. Functional studies 
using zebrafish models with rps27 knockdown revealed devel-
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opmental defects, including impaired erythropoiesis, further 
confirming the role of RPS27 mutations in DBA pathogenesis 
[25].

60S Large Ribosomal Subunit (RPL genes)
RPL5 (AD)

Gazda et al. [26] found that RPL5 mutations disrupt the 
maturation of pre-rRNA, particularly affecting the processing 
of 28S and 5.8S rRNA, which are essential for the assembly of 
the large ribosomal subunit. This disruption of ribosome bio-
genesis impairs erythropoiesis and contributes to the clinical 
manifestations of DBA [26]. RPL5 mutations are frequently as-
sociated with distinct craniofacial and skeletal abnormalities, 
including cleft palate, thumb abnormalities, and congenital 
heart defects [26]. In a study of 196 patients with DBA, RPL5 

mutations were found in a subset of patients, many of whom 
exhibited these malformations, highlighting a strong geno-
type-phenotype correlation [26]. Furthermore, RPL5 muta-
tions tend to result in a more severe phenotype than muta-
tions in other RP genes, such as RPS19 [3]. Approximately 
70% of patients with DBA with RPL5 mutations present with 
congenital malformations, and cleft lip or palate is significant-
ly more common in these patients than in those with other 
mutations [3]. 

RPL11 (AD)
Gazda et al. [26] have reported that individuals with RPL11 

mutations display a characteristic phenotype that includes 
both congenital abnormalities and DBA. Notably, RPL11 mu-
tations are predominantly associated with isolated thumb 
malformations, whereas RPL5 mutations lead to a broader 
spectrum of physical abnormalities, including cleft palate and 
heart anomalies [26].

RPL35A (AD)
Farrar et al. [27] found that RPL35A is associated with DBA 

through high-resolution genomic mapping and gene expres-
sion microarray analyses. Researchers have identified RPL35A 
as a candidate gene in patients with DBA with chromosome 
3q deletions and confirmed mutations in additional patients 
through sequence analysis [27]. Patients with RPL35A muta-
tions exhibit both hematological and congenital features typi-
cal of DBA, including anemia in infancy and congenital 
anomalies affecting the craniofacial region, heart, genitouri-
nary system, and upper limbs [27]. Some patients also display 
neutropenia, thrombocytopenia, and a heightened risk of de-

veloping hematological malignancies and osteosarcoma [27].

RPL26 (AD)
Gazda et al. [28] identified RPL26 as a gene associated with 

DBA through largescale screening of RP genes in a cohort of 
96 patients. Researchers have reported that a patient with an 
RPL26 frameshift mutation exhibited DBA and multiple physi-
cal abnormalities, including craniofacial, upper limb, and car-
diac malformations [28]. Interestingly, this mutation leads to 
defective ribosome biogenesis, affecting both small and large 
ribosomal subunits and disrupting the maturation of 18S and 
28S rRNAs [28]. Additionally, the patient presented with mac-
rocytic anemia and elevated erythrocyte adenosine deaminase 
levels [28].

RPL15 (AD)
Landowski et al. [29] identified a novel RPL15 deletion in a 

patient with DBA that disrupted the formation of the 60S sub-
unit and impaired pre-rRNA processing, particularly affecting 
the maturation of the 28S and 5.8S rRNAs. This leads to re-
duced ribosome production and impaired erythropoiesis [29]. 
Similarly, Wlodarski et al. [30] reported truncating mutations 
in RPL15 in patients with severe hydrops fetalis, who later 
achieved spontaneous remission [30]. These mutations cause 
defects in ribosome assembly, resulting in decreased cell pro-
liferation, delayed erythroid differentiation, and TP53-mediat-
ed apoptosis of hematopoietic cells [30]. Overall, RPL15 mu-
tations are linked not only to the development of DBA but 
also to unique clinical outcomes, such as spontaneous remis-
sion and treatment independence [30].

RPL27 (AD)
Using WES, Wang et al. [25] identified a splicing mutation 

in RPL27 in a patient with DBA having an atrial septal defect 
and pulmonary stenosis, leading to defective ribosome bio-
genesis. Functional analysis using knockdown experiments in 
human erythroid cells revealed that depletion of RPL27 im-
paired pre-rRNA processing, specifically affecting the matura-
tion of 28S rRNA, which is essential for the proper formation 
of the 60S ribosomal subunit [25]. Moreover, zebrafish mod-
els with RPL27 knockdown exhibited abnormal development, 
including reduced erythropoiesis, mimicking the anemia ob-
served in patients with DBA [25]. 

RPL18 (AD)
Mirabello et al. [31] identified a non-synonymous RPL18 
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variant in two DBA-affected family members. One proband 
presented with anemia at 8 months of age and was steroid-re-
sponsive [31]. Another patient, the proband’s child, exhibited 
mild anemia at birth, which later recurred at the age of one 
and also responded to steroid therapy [31]. None of the pa-
tients exhibited dysmorphic features, but both had intermit-
tent neutropenia from birth [31]. This mutation causes the ac-
cumulation of 36S pre-rRNA, disrupts the maturation of 28S 
rRNA, and impairs the assembly of the 60S subunit, which 
hinders ribosome biogenesis and leads to defective erythro-
poiesis, contributing to the clinical symptoms of DBA [31].

RPL35 (AD)
Mirabello et al. [31] also identified a non-synonymous vari-

ant of RPL35 in a family with DBA. The proband developed 
anemia at 2 months of age, which spontaneously resolved by 
18 years of age without any known relapse [31]. BM evalua-
tion at 3 months revealed erythroid hypoplasia, leading to the 
diagnosis of DBA [31]. The proband’s daughter presented with 
anemia at 1 month of age, which was responsive to steroid 
therapy [31]. However, at age 15, she developed ulcerative coli-
tis, and during treatment, her blood count dropped, leaving 
her dependent on RBC transfusions [31]. This mutation im-
pairs pre-rRNA processing, leading to the accumulation of 32S 
pre-rRNA and defective 28S rRNA maturation, which disrupts 
the 60S subunit assembly and contributes to the clinical fea-
tures of DBA [31].

Non-RP genes
GATA1 (X-linked recessive)

GATA1 plays a crucial role in regulating gene expression and 
the maturation of erythroid cells; in its absence, erythroid pro-
genitors are unable to differentiate properly and ultimately 
undergo apoptosis [32]. Although important insights into 
GATA1 function have been derived from animal models, the 
discovery that rare red cell disorders, such as DBA, are associat-
ed with GATA1 mutations has provided a deeper understand-
ing [32]. GATA1 was recognized as the first non-RP mutation 
in DBA using WES [4]. A recent study in human cells revealed 
that the reduced translation of GATA1 due to RP haploinsuffi-
ciency, a common cause of DBA, plays a key role in the ery-
throid abnormalities observed in this disorder [33,34]. Ludwig 
et al. demonstrated that GATA1 mRNA has a high threshold 
for translation initiation, making it particularly susceptible to 
defects in RP levels [34]. In patients with DBA having RPS19 
mutations, despite unchanged GATA1 mRNA levels, the activi-

ty of GATA1 target genes is significantly diminished, indicating 
a translational defect [34]. The study also examined the effect 
of reducing RPL11, RPL5, and RPS24 and found that these re-
ductions similarly decreased GATA1 protein levels, suggesting a 
general mechanism [34]. This study offers strong evidence that 
impaired translation of GATA1 mRNA, resulting from RP hap-
loinsufficiency, plays a crucial role in the erythroid defects ob-
served in DBA [33]. This aligns with the discovery that rare mu-
tations in the GATA1 gene itself can lead to disease, effectively 
linking the two mechanisms [33]. These insights could poten-
tially be harnessed therapeutically, possibly by focusing on en-
hancing GATA1 protein production to alleviate anemia associ-
ated with DBA [33]. Additionally, Rio et al. [35] demonstrated 
that decreased HSP70 levels lead to a reduction in GATA1, 
causing an imbalance between globin and heme synthesis in 
DBA. This imbalance results in excess free heme, increased re-
active oxygen species, and enhanced apoptosis of erythroid 
cells. The study shows that restoring HSP70 expression can re-
balance globin and heme synthesis, reduce free heme toxicity, 
and improve erythropoiesis in DBA [35].

TSR2 (X-linked recessive)
Gripp et al. [5] explored the genetic basis of DBA combined 

with MFD in seven individuals from six unrelated families us-
ing WES of these individuals and their family members. They 
identified mutations in known DBA genes, such as RPS26, 
along with novel mutations in TSR2 and RPS28 [5]. Specifical-
ly, the TSR2 hemizygous mutation has been analyzed for its ef-
fect on RP interactions and RNA processing, with researchers 
confirming that the mutation impairs the ability of the protein 
to bind to RPS26, a key step in ribosome assembly [5]. This 
study highlights the genetic heterogeneity of the combined 
DBA and MFD phenotypes, suggesting that disrupted ribo-
somal function may underlie the diverse clinical manifesta-
tions observed across different ribosomopathies [5]. A recent 
study by Yang and Karbstein [36] demonstrated that the chap-
erone TSR2 plays a crucial role in managing the release and re-
integration of RPS26 from mature ribosomes, facilitating a re-
versible response to stress. Under stressful conditions, RPS26 
dissociates from fully assembled ribosomes and triggers a tar-
geted translational response [36]. TSR2 is essential for this pro-
cess, aiding the release of RPS26 during stress and its reintegra-
tion into ribosomes once normal conditions are restored [36]. 
This mechanism enables ribosomes to swiftly adapt to envi-
ronmental changes with minimal energy use, without com-
promising quality control [36]. Moreover, this study identified 
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a specific residue in RPS26 linked to DBA that influences the 
sodium stress response, highlighting the significance of this ri-
bosome remodeling mechanism in ribosomopathies [36]. To-
gether, these findings enhance our understanding of ribosomal 
heterogeneity and its role in stress responses and provide valu-
able insights into the development of DBA and related disor-
ders [36].

HEATR3 (Autosomal recessive)
A recent study by O’Donohue et al. [6] showed that DBA 

can also be caused by biallelic mutations in the HEATR3 gene. 
Six individuals from four families with biallelic mutations in 
HEATR3 showed BM failure with selective erythroid hypopla-
sia, short stature, facial dysmorphism, limb deformities, cardi-
ac defects, and intellectual disability [6]. HEATR3 mutations 
destabilize a protein that is crucial for importing the RPs uL5 
(RPL11) and uL18 (RPL5) into the nucleus, which are essential 
for ribosome assembly and p53 stabilization [6]. This study 
demonstrated that HEATR3 mutations or reduced HEATR3 ex-
pression led to impaired cell growth, differentiation, and ribo-
some subunit formation, mimicking the effects of mutations 
in large subunit RP genes associated with DBA [6]. Further-
more, HEATR3-deficient cells exhibit decreased nuclear accu-
mulation of RPL5 and abnormal erythrocyte maturation, in-
dependent of p53 activation [6]. Appropriate ribosome bio-
genesis is essential for the proliferation and differentiation of 
erythroid progenitors into RBCs [37]. In normal erythroid 
progenitors within the BM, HEATR3 functions as a transport 
factor moving RPL5 from the cytoplasm to the nucleus [37]. 
After entering the nucleus, RPL5 binds with RPL11 and 5S 
rRNA to form the 5S ribonucleoprotein complex, which is 
subsequently incorporated into the assembly of large ribo-
somal subunits, contributing to the formation of the central 
protuberance [37]. However, biallelic HEATR3 mutations dis-
rupt this process, leading to defects in pre-RNA processing, re-
duced 60S ribosomal subunits, and failure in erythropoiesis, 
which clinically manifests as DBA [37].

CONLCLUSION

In summary, this review highlights significant advances in 
understanding the genetic underpinnings of DBA, particularly 
the role of mutations in RP genes. These findings underscore 
the critical role of ribosomal dysfunction in DBA pathogenesis, 
which contributes to defective ribosomal biogenesis, p53 
pathway activation, and impaired erythropoiesis. In addition, 

the identification of non-RP gene mutations broadens the ge-
netic landscape of DBA and suggests that ribosomal stress and 
erythroid-specific defects may arise from a wider array of ge-
netic abnormalities. This reinforces the complexity of DBA as a 
ribosomopathy and highlights the need for further exploration 
of non-RP gene mutations.
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INTRODUCTION

Conventional karyotyping is the primary test used to detect chromosomal aber-
rations in hematological malignancies. This is useful for detecting numerical aber-
rations and balanced rearrangements [1]. However, karyotyping has limitations, 
such as low resolution, lack of objective parameters to define G-banding patterns, 
and dependence on cell culture efficiency. Fluorescence in situ hybridization 
(FISH) can overcome the limitations of karyotyping. However, FISH can be used 
only for specific chromosomal regions [2].

Chromosomal microarray (CMA) is widely used to detect small copy number 
variants (CNVs) and is primarily recommended for application in germline disor-
ders such as neurodevelopmental disorders and congenital malformations [3]. 
CMA can detect copy-neutral loss of heterozygosity (CN-LOH) using single nucle-
otide polymorphism (SNP) markers, and is applicable for diagnosing imprinting 
disorders [4]. CMA is also applicable to the genetic diagnosis of somatic disorders 
such as hematologic malignancies and lymphomas [5,6]. In this article, we de-
scribe the clinical utility of CMA in the genetic investigation of hematologic ma-
lignancies.

BENEFITS AND LIMITATIONS OF CMA FOR HEMATOLOGIC 
MALIGNANCIES

Recent CMA platforms consist of CNV and SNP markers. The CNV compares 
the scanned data of the sample with the control data, which were obtained using 
hundreds of control individuals [7]. Therefore, the application of a control sam-
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mia (AML), myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and mul-
tiple myeloma (MM). An increase in CMA testing for hematologic malignancies is expected to identify novel markers of clinical 
significance.

Key words: Chromosomal microarray, Hematologic malignancy, Copy-number abnormalities, Copy-neutral loss of heterozy-
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ple is not required, which is required for conventional array 
comparative genomic hybridization (aCGH) [8]. SNP markers 
are complementary to CNV markers and help detect CNVs 
more accurately using B-allele frequencies [9]. A combination 
of CNV and SNP markers can be used to distinguish between 
heterozygous deletions and CN-LOH [10].

The application of CMA to hematological malignancies does 
not require cell culture processing, which is crucial for karyo-
typing and FISH. Therefore, CMA can avoid cell culture bias 
and may have a shorter turnaround time than karyotyping 
[10]. Most CMAs have a higher resolution than karyotyping 
and are much more sensitive for detecting small copy number 
abnormalities (CNAs) with sizes < 5–10 Mb [11]. It can also 
discern complex chromosomal abnormalities such as amplifi-
cation, chromothripsis, intrachromosomal complexity, and ge-
nomic complexity [12]. The distinction between the doubling 
of hypodiploid clones of acute lymphoblastic leukemia (ALL) 
and non-hypodiploid ALL can be achieved by CMAs [10].

However, CMA has certain limitations. Generally, balanced 
rearrangements cannot be detected, such as balanced translo-

cations or inversions. The CMA results depend on the propor-
tion of malignant cells in the sample, and has limitations in 
detecting minimal residual diseases (Table 1). This is because 
CMA cannot detect low levels of mosaicism or chimerism with 
a percentage < 20% [13]. CMA cannot distinguish between in-
dividual clones, such as stemlines and sidelines either [14]. 
CMA is not recommended for all types of hematologic malig-
nancies [15]. The interpretation of CMA results can be difficult 
for hematologic malignancies compared to germline disorders 
because the public database is limited to somatic CNAs [12].

INDICATIONS OF HEMATOLOGIC 
MALIGNANCIES FOR CMA

All hematological malignancies were not indicated in the 
CMA analysis. Generally, the diagnostic and prognostic bene-
fits of CMA are limited to chronic myelogenous leukemia 
(CML) and myeloproliferative neoplasms (MPN) [15]. How-
ever, CMA can sensitively detect recurrent or novel findings in 
acute myeloid leukemia (AML), myelodysplastic syndrome 

Table 1. Comparison of advantages and disadvantages in cytogenetic tests for hematologic malignancies

Method Advantages                          Disadvantages

Karyotyping - Direct observation of all chromosomal abnormalities
- Can detect balanced translocations

- Low resolution
- Requires cell culture
- Cannot detect small CNAs

FISH - High sensitivity for specific chromosomal abnormalities - Limited to predefined regions
- Requires pre-designed probes

CMA - High-resolution detection of CNAs
- No need for cell culture
- Can detect CN-LOH

- Cannot detect balanced translocations
- Depends on the proportion of malignant cells
- Limited ability to detect low-level mosaicism

FISH, fluorescence in situ hybridization; CMA, chromosomal microarray; CNA, copy number abnormality; CN-LOH, copy neutral loss of heterozygosity.

Table 2. Indications and suggestive findings of hematologic malignancies for chromosomal microarray

Indication Suggestive findings

AML -5/5q del, -7, KMT2A partial tandem dup, 13q CN-LOH, 9q del
MDS -5/5q del, -7/7q del, Trisomy 8, 11q del, 12p del, -13/13q del, 17p del/i(17q), 7q CN-LOH, 11q CN-

LOH, 1p CN-LOH, 1q gain, Trisomy 21
Myeloid/lymphoid neoplasms with eosinophilia 4q12 del (FIP1L1-PDGFRA fusion)
B-ALL -5/5q del, -7/7q del, Trisomy 8, 11q del, 12p del, -13/13q del, 17p del/i(17q), IKZF1 del (7p12.2), ERG 

del (21q22.2), CDKN2A/2B del (9p21.3), ETV6 del (12p13.2), PAX5 del (9p13.2), RB1 del (13q14.2)
T-ALL TCR rearrangements with CNAs, 9q34.1 amp in NUP214-ABL1 fusion, 1p33 del in STIL-TAL1  

fusion, 6q del, CDKN2A/2B biallelic del (9p21.3)
CLL 11q22.3 del (ATM and/or BIRC3), Trisomy 12, 13q14.2 del (MIR15A/16-1), 17p13.1 del (TP53), 

2p12p25.3 gain (MYCN), 9p21.3 del (CDKN2A), Trisomy 19, 6q del, 14q24.1q32.3 del
MM Trisomies of odd-numbered chromosomes, 1q21 gain, -17/17p13.1 del (TP53), 1p del, 14q del, 16q del
Burkitt-like lymphoma with 11q aberrations 11q CNAs

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; ALL, acute lymphoblastic leukemia/lymphoma; CLL, chronic lymphocytic leukemia; 
MM, multiple myeloma; del, deletion; dup, duplication; amp, amplification; CN-LOH, copy-neutral loss of heterozygosity; CNA, copy number abnor-
mality.
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(MDS), ALL, chronic lymphocytic leukemia (CLL), and multi-
ple myeloma (MM) [11,16-21]. CMA application is recom-
mended as the next step to detect novel findings such as small 
CNAs and CN-LOH, if normal results are obtained at the diag-
nosis or relapse of hematologic malignancies through karyo-
typing and FISH, CMA testing is also recommended as an al-
ternative if the cell culture for karyotyping fails [10]. In ALL, 
some CNAs are indicative of gene fusions, such as 1p33 dele-
tion (STIL-TAL1 fusion) and 9q34.1 amplification (NUP214-
ABL1 fusion), which have diagnostic values (Table 2) [10,12].

LABORATORY STANDARDS AND QUALITY 
ASSURANCE OF CHROMOSOMAL 
MICROARRAY FOR HEMATOLOGIC 
MALIGNANCIES

Validation or verification of testing is required in the labora-
tory before clinical practice of CMA testing is conducted . Dur-
ing the validation process, the accuracy, precision, analytical 
sensitivity, specificity, and reportable range must be estab-
lished. During the verification process applicable to Food and 
Drug Administration-approved tests, the accuracy, precision, 
and reportable range of results must be established using pre-
viously characterized samples. The percentage of abnormal 
cells was determined by a dilution study using samples with 
known copy number changes [13].

The laboratory must establish sample requirements and 
DNA quality thresholds. Generally, the primary recommended 
sample for hematologic malignancy is bone marrow (BM). A 
peripheral blood (PB) sample can be used as an alternative if 
malignant cells are sufficient in the PB [15]. The laboratory 
must establish thresholds for quality control (QC) metrics in 
assay procedures, such as DNA OD 260/280, quantity, and 
PCR product size requirements. The thresholds of data QC 
metrics, such as the median absolute pairwise difference 
(MAPD) and SNPQC, must be established and managed in 
the laboratory [7,13].

INTERPRETATION OF CMA RESULTS FOR 
HEMATOLOGIC MALIGNANCIES

The American College of Medical Genetics and Genomics 
(ACMG) and the Cancer Genomics Consortium (CGC) re-
ported consensus recommendations regarding technical stan-
dards for the interpretation of CNAs and CN-LOH in neoplas-
tic disorders. Interpretation of the CMA results for hematologic 

malignancies was based on a four-tier evidence-based categori-
zation system. This system is similar to the sequence variant 
interpretation standards for somatic disorders and focused on 
the diagnostic, prognostic, and therapeutic significance. Ac-
cording to the evidence level, the CNAs or CN-LOH of the 
CMA results can be classified as Tier 1A/B (strong clinical sig-
nificance), Tier 2 (some clinical significance), Tier 3 (clonal 
variants with no documented association with neoplastic dis-
order), and Tier 4 (benign or likely benign). Under special 
considerations, the germline pathogenic variants associated 
with cancer predisposition are classified as Tier 1A [12].

The interpretation of CMA results for hematologic malig-
nancies can be highly dependent on other clinical informa-
tion, such as clinical/pathologic diagnosis, and other test re-
sults, including karyotyping, FISH, and other molecular analy-
ses. The same cytogenomic aberrations can be classified differ-
ently in different disorders.

Several public databases contain information on somatic 
copy number abnormalities. There is a lack of public data, ex-
cept for the World Health Organization classification of hema-
tolymphoid tumors. The laboratories are recommended to 
manage in-house databases to discriminate between signifi-
cant and normal results. It is also recommended that laborato-
ry standards be established to report incidental findings such 
as suspected germline variants associated with other clinical 
relevance such as constitutional disorders [12,22].

SUMMARY AND CONCLUSION

CMA is widely used in the diagnosis of hematologic malig-
nancies such as AML, MDS, ALL, CLL, and MM. Although 
CMA has limitations in detecting balanced chromosomal rear-
rangements, it exhibits diagnostic utility for detecting small 
CNAs and CN-LOH. The CMA results for hematologic malig-
nancies are clinically significant as diagnostic, prognostic, and 
therapeutic evidence. In Korea, healthcare reimbursements are 
necessary for the clinical application of CMA for hematologic 
malignancies. CMA testing is highly recommended to comple-
ment conventional karyotyping and FISH in various hemato-
logic malignancies. An increase in CMA testing for hematolog-
ic malignancies is expected to provide novel diagnostic and 
prognostic findings for optimizing patient care and treatment.
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INTRODUCTION

Neonatal diabetes mellitus, also known as congenital diabetes mellitus, is a rare 
genetic disorder with an incidence of approximately 1 in 10,000 live births [1,2]. 
Neonatal diabetes is defined as diabetes diagnosed within the first six months of 
life [3]. Although diabetes generally arises from complex interactions between en-
vironmental and genetic factors, neonatal diabetes arises specifically from genetic 
defects [2]. Neonatal diabetes is primarily associated with abnormalities in the 
development and secretion of insulin-producing cells in the pancreas, or with 
dysfunction of pancreatic β cells. The most frequent genetic causes of neonatal di-
abetes characterized by abnormal β-cell function include abnormalities at the 
6q24 locus and mutations in the ABCC8 or KCNJ11 genes, which code for potas-
sium channels in pancreatic β cells [1,2]. 

Other genetic anomalies have been reported, which are associated with pancre-
atic development, abnormalities in β cell differentiation, and apoptosis [4]. Neo-
natal diabetes is classified based on insulin dependency into the transient (tem-
porary) and permanent [3] forms. In the transient form, treatment can be discon-
tinued at any time from the first few weeks up to age five years, whereas the per-
manent form requires lifelong treatment. The clinical differences between tran-
sient and permanent neonatal diabetes are not always associated with distinct 
molecular mechanisms. Abnormalities at the 6q24 locus are solely associated 
with transient neonatal diabetes, whereas mutations in ABCC8, KCNJ11, and INS 
are linked to both permanent and transient forms [5-7]. Other genetic factors are 
also associated with permanent neonatal diabetes [4]. At birth, 62% of neonates 
have a birth weight below the 10th percentile, underscoring the critical role of in-
sulin secretion in fetal growth [3]. In patients with transient diabetes, the condi-
tion recurs at the onset of puberty in 86% of cases, likely due to insulin resistance 
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associated with puberty [8]. No differences were observed 
among the genetic groups, and neonatal diabetes can be ac-
companied by neurological disorders and developmental de-
fects [9]. Genetic analysis can diagnose monogenic diabetes in 
nearly 83% of patients before six months of age [10]. Genetic 
diagnosis is essential as it influences treatment options and 
can predict potential diabetes-related complications or illness-
es. Genetic analysis should be performed for all children in the 
following cases: those diagnosed with diabetes within six 
months of birth; those aged six months to 1 year who exhibit 
extra-pancreatic features and lack evidence of pancreatic auto-
immunity; and those with multiple autoimmune disorders, 
unusual family history, and associated congenital disabilities. 
Testing should not be delayed until other symptoms or poten-
tial remission [11]. Furthermore, it is crucial to ascertain 
whether sulfonylureas can be successfully introduced [12].

GENETIC ASPECTS (ABNORMAL β CELL 
FUNCTION)

Abnormalities at the 6q24 locus (PLAGL1 and HYMAI)
Neonatal diabetes resulting from abnormalities in the 6q24 

locus (MIM#601410 and 603044) encompasses paternal uni-
parental disomy of 6q24 (pUPD6), partial duplication of pa-
ternal 6q24, and relaxation of the maternal 6q24 imprinted 
locus [13]. This locus contains a CpG island with differential 
methylation depending on parental origin. Methylation down-
regulates the gene transcription of methylated alleles [13]. 
Overexpression of imprinted genes located at 6q24, such as 
PLAGL1 (pleiomorphic adenoma gene-like 1) and HYMAI (hy-
datidiform mole-associated and imprinted) transcript, is be-
lieved to be associated with disease manifestations [14,15] (Ta-
ble 1). PLAGL1 is a transcription factor that encodes a protein 
involved in the regulation of cell cycle arrest and apoptosis, as 
well as in the induction of the receptor one gene for the potent 
insulin secretagogue human pituitary adenylate cyclase-activat-
ing polypeptide (PACAP1). Diabetes resulting from abnormali-

ties at the 6q24 locus typically occurs before one month of age 
in 93% of cases, and before three months in 100% of cases. In-
trauterine growth restriction was observed across all genetic 
groups, with a higher percentage found in patients with 6q24 
abnormalities than in those with ABCC8 or KCNJ11 mutations. 
Reports indicate that 97% of patients with 6q24 locus abnor-
malities experience remission before one year of age [16]. Addi-
tionally, patients with 6q24 locus abnormalities can experience 
developmental defects (such as macroglossia, umbilical hernia, 
cardiac malformations, renal and urinary malformations, non-
autoimmune anemia, and hypothyroidism with glands in situ) 
and neurological disorders [16].

Mutations of the KAPT Channel Genes (ABCC8 and 
KCNJ11)

The ATP-sensitive potassium channel (KAPT channel) (MIM 
*600509 and *600937) is critical in stimulating insulin secre-
tion in response to glucose in pancreatic β cells. Under low 
blood glucose conditions, KAPT channels are activated and re-
main open, maintaining a hyperpolarized resting membrane 
potential. When blood glucose levels rise, glucose is taken up 
into β cells, entering the glycolytic pathway and increasing in-
tracellular ATP concentration. This leads to the closure of KAPT 
channels, resulting in potassium accumulation within the cell, 
ultimately causing membrane depolarization. Depolarization 
activates voltage-dependent calcium channels, allowing Ca2+ 
ions to enter β cells, facilitating the exocytosis of secretory vesi-
cles, and releasing insulin into the bloodstream. ATP channels 
comprise a tetrameric protein structure formed by two sub-
units encoded by KCNJ11 and ABCC8 [17,18]. Even in indi-
viduals with a normally structured pancreas, activation muta-
tions in either of these genes can disrupt the structure or func-
tion of KAPT channels, leading to neonatal diabetes. These mu-
tations cause the KAPT channel to remain permanently open, 
thereby failing to regulate membrane potential in response to 
rising glucose levels, which ultimately results in impaired insu-
lin secretion. Mutations in the ABCC8 and KCNJ11 genes man-

Table 1. Genetic causes of neonatal diabetes mellitus

Abnormality point Gene Gene function Tansmission mode Type of diabetes

6q24 locus methylation PLAGL1, HYMAI Transcription factor regulation of 
cell cycle arrest and apoptosis

Genetic aberrations of the 
imprinted locus at 6q24

Mostly transient, rare permanent

KAPT Channel ABCC8, KCNJ11 KAPT channel/insulin secretion AD Permanent, transient, DEND
Pro-insulin INS Hormone Rare AR Transient, permanent
Glucokinase GCK Glucose metabolism AD, AR Heterozygous: MODY2

Homozygous: permanent

AD, autosomal dominant; AR, autosomal resessive; DEND, Developmental delay Epilepsy and Neonaral diabetes.
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ifest in approximately 30% of cases before one month of age 
and between 1 and 6 months of age in 66% of cases [3]. In pa-
tients with ABCC8 or KCNJ11 mutations, remission may per-
sist until five years of age [3,19]. Approximately 25% of these 
patients experience neurological disorders ranging from severe 
epilepsy to cognitive developmental delays, commonly re-
ferred to as DEND syndrome (developmental delay, Epilepsy, 
and Neonatal Diabetes) [20] (Table 1). Furthermore, when pa-
tients undergo detailed neuro-psychomotor and neuropsycho-
logical assessments, attention deficits or language disorders, 
including dyslexia, are observed in 100% of cases [3].

Mutations of the Insulin Gene (INS)
Mutations in the insulin gene (INS) (MIM *176730) pre-

dominantly involve heterozygous mutations affecting the 
structure of pro-insulin and are inherited in an autosomal 
dominant manner [21,22]. Pro-insulin with structural abnor-
malities is degraded within the cell, leading to severe endoplas-
mic reticulum (ER) stress and eventual β cell death. This pro-
cess has been documented in mouse models and human stud-
ies, and reports suggest that INS mutations may influence β 
cell growth and development through chronic ER stress rather 
than solely leading to cell death [23-26]. Some mutations alter 
protein expression and are primarily inherited in a recessive 
manner within consanguineous families. These mutations 
have been shown to affect the expression of the insulin pro-
moter directly or are influenced by mutations in factors that 
enhance its activity [27] (Table 1). Rare recessive INS mutations 
may lead to remission at a median age of 12 weeks. However, 
most INS mutations are dominant and do not lead to remis-
sion.

Mutations of the Glucokinase Gene (GCK)
Glucokinase plays a pivotal role in the first step of glucose 

metabolism in β cells and acts as a glucose sensor to regulate 
the amount of insulin secreted. Nonsense mutations of the 
GCK gene (MIM *138079) lead to Maturity Onset Diabetes of 
the Young type 2 (MODY 2), which typically presents as mod-
erate hyperglycemia [28]. This genetic disorder is transmitted 
in an autosomal dominant manner; however, homozygous 
states of these nonsense mutations can result in a complete 
deficiency of glucokinase-mediated glycolysis, leading to neo-
natal diabetes [29] (Table 1). Although this is not a frequent 
cause of neonatal diabetes, it is crucial to check fasting blood 
glucose levels in both parents, mainly if there is a history of 
gestational diabetes. If mild glucose intolerance is found in 

both parents, evaluating mutations in the GCK gene is neces-
sary.

THERAPEUTIC ASPECTS

Patients with neonatal diabetes often begin treatment during 
the neonatal period because of early-onset diabetes and intra-
uterine growth retardation. The initial treatment aims to rebal-
ance carbohydrate metabolism and begins immediately upon 
diagnosis. Treatment should establish a balance between calo-
rie and carbohydrate intake necessary to restore average weight 
(15–18 g/kg/day of carbohydrates) while avoiding excessive in-
take that could lead to future insulin resistance. Additionally, 
sufficient insulin-based treatment is required to achieve appro-
priate metabolic equilibrium. The goal is to normalize blood 
glucose levels without inducing hypoglycemia by targeting 
blood glucose levels before (target: 70–120 mg/dL) and after 
meals (target: 100–145 mg/dL). Both hyperglycemia and hypo-
glycemia can adversely affect the neurological development of 
neonates; therefore, it may be beneficial to use diluted insulin 
or an insulin pump to improve insulin management during 
the early weeks of life. Blood glucose measurements should ac-
curately reflect capillary blood glucose levels and continuous 
glucose monitoring sensors may serve as alternatives.

Patients with mutations in the ABCC8 or KCNJ11 genes were 
successfully treated with hypoglycemic sulfonylureas. These 
sulfonylureas bind to the SUR1 subunit, which regulates po-
tassium channels. In patients with these mutations, the KAPT 
channels remain sensitive to sulfonylureas in approximately 
90% of cases, inhibiting the potassium channels in pancreatic 
β cells and restoring insulin secretion in response to meals. 
Sulfonylurea therapy is reportedly safe and effective for con-
trolling blood glucose levels in neonatal patients with diabe-
tes, even before genetic test results are available. Therefore, em-
pirical inpatient trials on sulfonylureas should be considered. 
Current evidence indicates that treatment with sulfonylureas 
normalizes HbA1c and significantly reduces the incidence of 
hypoglycemia while providing better metabolic control than 
insulin in neonatal diabetes associated with ABCC8 or KCNJ11 
mutations. Recent studies have also demonstrated that when 
introduced early in childhood, hypoglycemic sulfonylureas 
can improve neurological, neuropsychological, and visuomo-
tor impairments [33,34]. Moreover, Garcin et al. showed that 
sulfonylureas could successfully replace insulin in neonatal di-
abetes associated with chromosome 6 methylation abnormali-
ties [35]. This underscores the importance of rapid genetic di-
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agnosis following the diagnosis of neonatal diabetes and high-
lights the critical timing for the introduction of sulfonylureas.

CONCLUSION

Neonatal diabetes is a model for rare human genetic disor-
ders and is pivotal for understanding beta cell function abnor-
malities, including issues related to the 6q24 locus and muta-
tions in genes for the KAPT channel, pro-insulin, and glucoki-
nase. Neonatal diabetes is often associated with specific neuro-
psychological or developmental disorders, necessitating all cli-
nicians treating patients with neonatal diabetes to investigate 
the occurrence of these clinical symptoms. The treatment op-
tions for neonatal diabetes include insulin or sulfonylureas; 
the use of sulfonylureas is associated with a lower risk of hypo-
glycemia. Ultimately, it is essential to establish a prompt ge-
netic diagnosis and prioritize the early introduction of sulfo-
nylureas for the management of neonatal diabetes.
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INTRODUCTION

Parkinson’s disease (PD) is a chronic, widespread neurodegenerative disorder 
characterized by a progressive loss of dopaminergic neurons in the substantia nig-
ra (SN) pars compacta (SNpc) throughout the midbrain [1]. The main pathology 
of PD is the aggregation of the protein α-synuclein (αSYN) in the cytoplasmic re-
gion of dopamine neurons [2]. 

The Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) 
is activated by cytokines, interferons, and growth factors [3] and is involved in cell 
survival, proliferation, angiogenesis, inflammation, and apoptosis [4]. Abnormal 
activation of JAK/STAT occurs in neuroinflammation and neurodegenerative dis-
eases such as multiple sclerosis, Alzheimer’s disease, and PD [5].

Synthetic oligodeoxynucleotide (ODN) technology is a gene therapy strategy 
consisting of DNA or RNA-based molecular compounds that disrupt gene tran-
scription or translation [6]. To improve a new therapeutic approach, in this study 
we used a combination of antisense ODN and decoy ODN to synthesize αSYN/
STAT ODN which inhibits both SYN and STAT. Although these ODN have proven 
beneficial in several disease models, it has not yet been demonstrated whether 
αSYN/STAT ODN can attenuate the development of molecular mechanisms of 
neurotoxicity. Therefore, we investigated the effect of αSYN/STAT ODN on neuro-
nal cytotoxicity in an in vitro model of Parkinson’s disease.
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METHODS 

Synthesis of Oligodeoxynucleotides (ODN)
Synthetic ODNs were commissioned by Macrogen (Seoul, 

Korea). The synthetic decoy ODN sequences were used as fol-
lows (the target site of the consensus sequence is underlined): 
STAT decoy ODN: 5́  GAA TTC GTT TCC GGG AAT GAA AAC 
ATT CCC GGA AAC 3́ ; αSYN antisense ODN: 5́  GGT ACC 
CTT CTT CAC CCT TAC C 3́ ; scrambled (SCR) decoy ODN: 5́  
GAA TTC AAT TCA GGG TAC GGC AAA AAA TTG CCG TAC 
CCT GAA TT 3́ . Considering the stability of the decoy ODN 
strategy, we designed a ring-type structured decoy ODN. These 
ODNs were annealed for 6 hours while temperature was grad-
ually decreased from 80°C to 25°C. Each ODN was mixed 
with T4 ligase (Takara Bio, Otsu, Japan) and incubated for 18 
hours at 16°C to obtain a covalent ligation for the ring-type 
decoy ODNs.

Cell culture and Reagents
A dopaminergic human neuroblastoma cell line SH-SY5Y 

(America Tissue Culture Collection, CRL-2266; ATCC, Manas-
sas, VA, USA), was cultured in a Dulbecco’s Modi-fied Eagle’s 
Medium (DMEM) medium (Gibco, Grand Island, NY, USA) 
containing 10% fetal bovine serum (FBS, Gibco) and 1% Anti-
Anti (Gibco). Cell cultures were maintained at 37°C in a hu-
midified atmosphere of 5% CO2. The sources of the following 
reagents were: 1-Methyl-4-phenylpyridinium ion (MPP+) (Sig-
ma-Aldrich); anti-SYN (Cat no: 2628, Cell Signaling Technol-
ogy), anti-PARP-1 (Cat no: 9542, Cell Signaling Technology), 
anti-pSTAT3 (Cat no: 9145, Cell Signaling Technology) and 
anti-β-actin (Cat no: SAB3500350, Sigma-Aldrich). Immunob-
lots were detected using an enhanced chemiluminescence re-
agent (Amer-sham Bioscience, Amersham, UK).

Cytotoxicity assay 
To evaluate the effect of αSYN/STAT ODN on MPP+ stimu-

lated proliferation SH-SY5Y cells were plated in 96-well culture 
plates at 1× 105 cells/ml in culture medium and allowed to at-
tach for 24 hours. Media were discarded and transfect with 
αSYN/STAT ODN in a new medium, then treat with MPP+ for 
24 hours. Cell viability was analyzed using the Cell Counting 
Kit (CCK-8; Dojindo Laboratories, Kumamoto, Japan) assay 
according to the manufacturer’s instructions. The absorbance 
at 450 nm was assessed using a microplate reader (Thermo 
Fisher Scientific, Waltham, MA, USA).

Transfection and Morphology examination
SH-SY5Y cells were transfected with synthetic ODN using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions. After transfection, the 
SH-SY5Y cells were cultured in MPP+ for 24 hours. The mor-
phology of SH-SY5Y cells were observed using an inverted 
phase contrast microscope (Olympus CKX41SF, Tokyo, Japan, 
× 200 magnification).

Immunoblot analysis
SH-SY5Y cells with a protein extraction buffer (N-PER™, 

Thermo Fisher Scientific, Waltham, MA, USA) according to the 
instruction manual. The protein samples were separated on 
precast gradient polyacrylamide gels (Bolt™ 4–12% Bis-Tris 
Plus Gels; Thermo Fisher Scientific) and transferred to nitro-
cellulose membranes (GE Healthcare, Madison, WI, USA) by 
using Bolt™ Mini Blot Module and Mini Gel Tank (Thermo 
Fisher Scientific), according to the manufacturer’s recommen-
dations. The membrane blocked with 5% bovine serum albu-
min was probed with a primary antibody and horseradish per-
oxidase-conjugated secondary antibody. Following a repeat of 
the wash step, the membrane was kept in enhanced chemilu-
minescence detection reagents (Thermo Fisher Scientific). Sig-
nal intensity was measured with an image analyzer (Chemi-
Doc™ XRS+; Bio-Rad Laboratories). 

Enzyme-linked immunosorbent assay (ELISA)
The culture medium of the cells was harvested, and cytokine 

production (TNFα and IL6) in the supernatant was measured 
with a solid phase sandwich ELISA using a Quantikine TNFα 
and IL6 kit (R&D systems, MN, USA) according to the manu-
facturer’s instructions.

Statistical analysis
All data analysis was performed with the GraphPad Prism 9 

(GraphPad Software, Inc., San Diego, CA, USA) using either a 
one-way ANOVA with Tukey’s post hoc test for multiple com-
parisons and data are presented as the mean± SEM (*P < 0.05, 
**P < 0.01, ***P < 0.001).

RESULTS

αSYN/STAT ODN protects SH-SY5Y cells against MPP+ 
induced neurotoxicity

The cytotoxic effects of αSYN/STAT ODN on SH-SY5Y cells 
were examined through a CCK assay before investigating its 
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pharmacological potential. αSYN/STAT ODN significantly in-
creased the viability of 3 mM MPP+ stimulated SH-SY5Y cells 
compared to cells treated with only MPP+ (Fig. 1A). Transfec-
tion of Scr ODN, a negative control, was similar to cells treated 
with MPP+. These results were also observed in cell morpholo-
gy. SH-SY5Y cells grew well, showing obvious neurites, and the 
cells treated with only αSYN/STAT ODN did not show any dif-
ference in cell growth compared to normal cells (Fig. 1B). 
When SH-SY5Y cells were exposed to MPP+ or Scr ODN, neu-
rites were reduced and cell debris increased; however, they 
were recovered with αSYN/STAT ODN transfection.

Effect of αSYN/STAT ODN on MPP+ induced apoptosis 
signaling pathway 

Since apoptosis is one of the important steps in the patho-

genesis of PD, we hypothesized that αSYN/STAT ODN could 
protect dopaminergic neuronal cells by inhibiting the apop-
totic pathway. First, we confirmed changes in the expression of 
ODN target proteins caused by MPP+. As shown Fig. 2, expres-
sion of SYN and p-STAT3 were increased by MPP+ or Scr ODN. 
As expected, this increase was reduced by αSYN/STAT ODN. In 
addition, αSYN/STAT ODN inhibited MPP+ induced cleaved 
PARP-1, apoptosis marker protein, in SH-SY5Y cells.

Fig. 1. Effect of αSYN/STAT oligodeoxynucleotide (ODN) on MPP+ to mimic Parkinson’s disease (PD) model in vitro. (A) Viability was de-
termined using the MTT assay. (B) The morphological changes, magnifications ×200. The data are representative of three similar experi-
ments and quantified as mean values±SEM. *P<0.05, **P<0.01, ***P<0.001 compared to normal control.
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αSYN/STAT ODN alleviates MPP+ induced 
neuroinflammatory response

MPP+ causes mitochondrial dysfunction and neuroinflam-
mation [7]. Repression of the JAK/STAT pathway disrupts the 
neuroinflammation and neurodegeneration circuitry charac-
teristic of PD [8]. To evaluate the impact of αSYN/STAT ODN 
on MPP+ mediated neuroinflammatory response, SH-SY5Y 
cells were transfected with αSYN/STAT ODN and Scr ODN fol-
lowed by MPP+ for 24 hours. The secretion of TNFα and IL6 
were significantly inhibited in MPP+ stimulated SH-SY5Y cells 
by αSYN/STAT ODN transfection (Fig. 3). Scr ODN was simi-
lar to cells treated with MPP+.   

 

DISCUSSION

The first peptide inhibitors of STAT proteins were discovered 
more than a decade ago, and attempts to target STAT signaling 
for therapeutic purposes are still ongoing [9]. Aberrant activa-
tion of the JAK/STAT pathway contributes to a number of au-
toimmune and neuroinflammatory diseases [10]. Several stud-
ies have illustrated that the novel inflammatory signals namely 
JAK/STAT, can be activated by LPS, TNF-α, IFN-γ, and IL-6 in 
the brain [11] and contribute to the pathogenesis of neuroin-
flammatory diseases [5]. The αSYN accumulation in the brain 
activated microglial and produced inflammatory cytokines or 
chemokines through the activation of the JAK/STAT pathway 
in different models of PD [12]. In addition, neurotoxin MPP+ 
treatment increased STAT1 expression levels and STAT1 phos-
phorylation and subsequent apoptosis in cerebellar granule 
neuron cells [13]. Furthermore, pyridone 6, a JAK inhibitor, re-
duced interferon β neurotoxicity in SH-SY5Y cells by reducing 
STAT1 and STAT3 phosphorylation and apoptosis [14].

Our research investigated the αSYN/STAT ODN protective 
effects on neurotoxicity in SH-SY5Y cells treated by MPP+. Our 
results exhibited that MPP+ exposure induced neuroinflamma-
tory responses and apoptosis through the secretion of TNFα/
IL6 and expression of cleaved PARP-1 in SH-SY5Y cells. In con-
trast, the transfected αSYN/STAT ODN reversed these changes 
caused by MPP+ in SH-SY5Y cells. These results strongly sup-
port the effectiveness of αSYN/STAT ODN, as the effect of Scr 
ODN was not observed.

Thus, gene therapy targeted to suppress mRNA level of SYN 
and transcription activity of STAT simultaneously might pro-
vide a new therapeutic strategy to prevent various neurological 
disorders.
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the views of the Society. There is no limitation on the format. 
But an editorial should be written in no more than four pages 
(A4) with the number of references limited to 20.

5. Brief report
Short communications of original research are published as 

case report. The purpose of the category is to permit publica-
tion of very important, high-quality mechanistic studies that 
can be concisely presented. These manuscripts should include 
a short nonstructured abstract (80–150 words), Introduction, 
Methods, Results, and Discussion.

The total manuscript length should not exceed 1,200 words, 
excluding title page, abstract page, notes, and references. Brief 
reports can include a maximum of 20 references and two fig-
ures or tables.

6. Image
Images that may help make clinical decisions while being 

interesting and educational in terms of the treatment of endo-
crinology and metabolism should be prepared with a manu-
script. The manuscript should not be more than one page (A4), 
with the number of references limited to five.

7. Letters to the editor
A letter should contain constructive criticisms or comments 

on a specific paper published by the journal within the previ-
ous 6 months. The manuscript should be no more than one 
page (A4), with the number of references limited to five.

MANUSCRIPT SUBMISSION, REVIEW AND 
PUBLICATION

1) �Authors should submit manuscripts via the electronic man-
uscript management system for JIG (https://acoms.kisti.
re.kr/journal/intro.do?page= logo&journalSeq= J000161). 
Please log in as a member of the system and follow the 
directions. The revised manuscript should be submitted 
through the same web system.

2) �All manuscripts submitted to JIG may be screened, using 
the similarity check tool (such as “iThenticate”), for textu-
al similarity to other previously published works. 

3) �Submitted manuscripts are first reviewed by journal edi-
tors. If a manuscript fails to comply with the submission 
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guidelines or the checklist (JIG Submission Checklist), it 
will be rejected for review and then returned to the au-
thor, to be re-written and re-submitted according to the 
submission guidelines.

4) �All submitted manuscripts are peer-reviewed (double blind-
ed) by two anonymous reviewers who are specialists in 
the relevant field, and the review period would not ex-
ceed 2 weeks (for initial manuscript and revised manu-
script of major revision). Publishing will be determined 
based on the review result and revisions or additions will 
be recommended to the authors as appropriate. Editorial 
Board determines whether manuscripts are acceptable. If 
changes are needed, the authors are recommended to re-
vise and amend the manuscripts within 3 months. If the 
revised manuscript is not returned within this period, it 
will be deemed that the author has decided not to pursue 
publication.

5) �If necessary, the Editorial Board may consult statisticians 
during the review process.

6) �Authors of a revised manuscript must describe on a line 
by line basis how the manuscript was revised according 
to the instructions of the referees.

7) �The finally accepted manuscript will be reviewed by man-
uscript editor for the consistency of the format and the 
completeness of references. The manuscript may be re-
vised according to the style guides of the journal.

8) �Before publication, the galley proof will be sent via email 
to the corresponding author for approval. Galley changes 
must be returned within 48 hours. Changes should be 
limited to those that affect the accuracy of the informa-
tion presented.

9) �The ORCID ID will be displayed in the published article 
for any author on a manuscript who has a validated OR-
CID ID when the manuscript is accepted.

10) �If it is necessary to revise a manuscript, the Publication 
Committee may do so insofar as it does not impact the 
original text, and according to its editing policy on word-
ing and formats.

11) �Publication by the journal shall be deemed to mean that 
the author has consented that the copyright thereof will 
be transferred to the journal (Copyright© Interdisciplin-
ary Society of Genetic & Genomic Medicine).

AUTHOR’S CHECK LIST BEFORE 
SUBMISSION

• �Every author is a regular member of the Society of ACOMS.
• �This manuscript has never been submitted to or published 

in other journals.
• �Follow the guidelines for length restrictions, abstract, refer-

ence, table and figure, supplemental data limits according 
to their manuscript type.

• �All citation references are correct and meet the submission 
rule.

• �Tables and figures are consistent with the submission rules, 
if any.

• �Each author took a certain role and contributed to the study 
and the manuscript.

• �The corresponding author signed electronically a statement 
disclosing any conflict of interest on behalf of all author(s) 
at the time of submission.

• �The manuscript was screened, using the similarity check 
tool, for textual similarity to other previously published 
works.

ABOUT REVIEW

In regard to the process of reviewing and assessing the man-
uscripts, including the ethical guidelines and plagiarism/dupli-
cate publication and study misconduct, it should conform to 
the ethical guidelines specified in the Recommendations for 
the Conduct, Reporting, Editing, and Publication of Scholarly 
Work in Medical Journals (http://www.icmje.org/recommen-
dations/); which were established by the International Com-
mittee of Medical Journal Editors (ICMJE). 

This journal uses double-blind peer review for all initial man-
uscripts and revised manuscripts of major revision, which means 
that both the reviewer and author identities are concealed from 
the reviewers, and vice versa, during the review process.
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