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ABSTRACT
In this paper we define a two parametric new generalized useful average code-word length  and its relationship 
with two parametric new generalized useful information measure  has been discussed. The lower and upper 
bound of , in terms of  are derived for a discrete noiseless channel. The measures defined in this commu-
nication are not only new but some well known measures are the particular cases of our proposed measures that already 
exist in the literature of useful information theory. The noiseless coding theorems for discrete channel proved in this paper 
are verified by considering Huffman and Shannon-Fano coding schemes on taking empirical data. Also we study the 
monotonic behavior of  with respect to parameters α and β. The important properties of   have also been 
studied.
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1. INTRODUCTION / LITERATURE REVIEW

The growth of telecommunication in the early twen-
tieth century led several researchers to study the infor-
mation control of signals; the seminal work of Shannon 
(1948), based on papers by Nyquists (1924; 1928) and 
Hartley (1928), rationalized these early efforts into a 
coherent mathematical theory of communication and 
initiated the area of research now known as information 
theory. The central paradigm of classical information 
theory is the engineering problem of the transmission 
of information over a noisy channel. The most fun-
damental results of this theory are Shannon’s source 
coding theorem which establishes that on average the 
number of bits needed to represent the result of an 
uncertain event is given by its entropy; and Shannon’s 
noisy-channel coding theorem which states that reliable 
communication is possible over noisy channels provid-
ed that the rate of communication is below a certain 
threshold, called the channel capacity. Information 
theory is a broad and deep mathematical theory with 
equally broad and deep applications, amongst which is 
the vital field of coding theory. Information theory is a 
new branch of probability and statistics with extensive 
potential application to communication systems. The 
term information theory does not possess a unique 
definition. Broadly speaking, information theory deals 
with the study of problems concerning any system. This 
includes information processing, information storage, 
and decision making. In a narrow sense, information 
theory studies all theoretical problems connected with 
the transmission of information over communication 
channels. This includes the study of uncertainty (infor-
mation) measure and various practical and economical 
methods of coding information for transmission.

It is a well-known fact that information measures 
are important for practical applications of information 
processing. For measuring information, a general ap-
proach is provided in a statistical framework based on 
information entropy introduced by Shannon (1948) as a 
measure of information. The Shannon entropy satisfies 
some desirable axiomatic requirements and also it can 
be assigned operational significance in important prac-
tical problems, for instance in coding and telecommu-
nication. In coding theory, usually we come across the 
problem of efficient coding of messages to be sent over a 
noiseless channel where our concern is to maximize the 

number of messages that can be sent through a channel 
in a given time. Therefore, we find the minimum value 
of a mean codeword length subject to a given constraint 
on codeword lengths. As the codeword lengths are in-
tegers, the minimum value lies between two bounds, so 
a noiseless coding theorem seeks to find these bounds 
which are in terms of some measure of entropy for a 
given mean and a given constraint. Shannon (1948) 
found the lower bounds for the arithmetic mean by 
using his own entropy. Campbell (1965) defined his 
own exponentiated mean and by applying Kraft’s (1949) 
inequality, found lower bounds for his mean in terms 
of Renyi’s (1961) measure of entropy. Longo (1976) 
developed lower bound for useful mean codeword 
length in terms of weighted entropy introduced by Belis 
and Guiasu (1968). Guiasu and Picard (1971) proved 
a noiseless coding theorem by obtaining lower bounds 
for another useful mean code-word length. Gurdial and 
Pessoa (1977) extended the theorem by finding lower 
bounds for useful mean codeword length of order α; 
also various authors like Jain and Tuteja (1989), Taneja 
et al (1985), Hooda and Bhaker (1997), and Khan et al 
(2005) have studied generalized coding theorems by 
considering different generalized ‘useful’ information 
measures under the condition of unique decipherability.

In this paper we define a new two parametric gen-
eralized useful average code-word length  and 
discuss its relationship with new two parametric general-
ized useful information measure . The lower and 
upper bound of , in terms of  are derived 
for a discrete noiseless channel in Section 3. The mea-
sures defined in this communication are not only new 
but also generalizations of certain well known measures 
in the literature of useful information theory. In Section 
4, the noiseless coding theorems for discrete channels 
proved in this paper are verified by considering Huffman 
and Shannon-Fano coding schemes using empirical 
data. In Section 5, we study the monotonic behavior of 

 with respect to parameters α and β. Several oth-
er properties of  are studied in Section 6.

 

2. BASIC CONCEPTS 

Let X be a finite discrete random variable or finite 
source taking values  with respective prob-
abilities  and 
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. Shannon (1948) gives the following mea-
sure of information and calls it entropy.

                     (1.1)

The measure (1.1) serves as a suitable measure of 
entropy. Let  be the probabilities of n code-
words to be transmitted and let their lengths  
satisfy Kraft (1949) inequality,

                                 (1.2)

For uniquely decipherable codes, Shannon (1948) 
showed that for all codes satisfying (1.2), the lower 
bound of the mean codeword length,

                              (1.3)

lies between H(P) and H(P)+1, where D is the size of 
code alphabet.

Shannon’s entropy (1.1) is indeed a measure of un-
certainty and is treated as information supplied by a 
probabilistic experiment. This formula gives us the 
measure of information as a function of the probabil-
ities only in which various events occur without con-
sidering the effectiveness or importance of the events. 
Belis and Guiasu (1968) remarked that a source is not 
completely specified by the probability distribution P 
over the source alphabet X in the absence of quality 
character. They enriched the usual description of the 
information source (i.e., a finite source alphabet and 
finite probability distribution) by introducing an addi-
tional parameter measuring the utility associated with 
an event according to their importance or utilities in 
view of the experimenter.

Let  be the set of positive real num-
bers, where  is the utility or importance of outcome 

. The utility, in general, is independent of , i.e., the 
probability of encoding of source symbol . The infor-
mation source is thus given by

	 	

 
     (1.4)

We call (1.4) a Utility Information Scheme. Belis and 
Guiasu (1968) introduced the following quantitative - 
qualitative measure of information for this scheme.

                 (1.5)

and call it as ‘useful’ entropy. The measure (1.5) 
can be taken as satisfactory measure for the average 
quantity of ‘valuable’ or ‘useful’ information provided 
by the information source (1.4). Guiasu and Picard 
(1971) considered the problem of encoding the letter 
output by the source (1.4) by means of a single letter 
prefix code whose codeword’s  have lengths 

 respectively and satisfy the Kraft’s inequality 
(1.2), they introduced the following quantity

                           (1.6)

and call it as ‘useful’ mean length of the code. Fur-
ther, they derived a lower bound for (1.6). However, 
Longo (1976) interpreted (1.6) as the average trans-
mission cost of the letters  with probabilities  and 
utility  and gave some practical interpretations of this 
length; bounds for the cost function (1.6) in terms of 
(1.5) are derived by him.

 

3. NOISELESS CODING THEOREMS FOR 
‘USEFUL’ CODES 

Define a two parametric new generalized useful infor-
mation measure for the incomplete power distribution as:

			           
             (2.1)

Where 0<α<1,0<β≤1, ≥0 =1,2,…,n , ≤1

Remarks for (2.1)
Ⅰ.	 ‌�When β=1, (2.1) reduces to ‘useful’ informa-

tion measure studied by Taneja, Hooda, and 
Tuteja (1985), i.e.,

                  (2.2)

Ⅱ.	 ‌�When β=1, =1, =1,2,…,n, i.e., when the 
utility aspect is ignored and =1, (2.1) 
reduces to Reyni’s (1961) entropy, i.e.,

                      (2.3)
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Ⅲ.	 ‌�When β=1 and α→1, (2.1) reduces to ‘useful’ 
information measure for the incomplete dis-
tribution due to Bhakar and Hooda (1993), i.e.,

                       (2.4)

Ⅳ.	 ‌�When β=1, =1, =1,2,…,n, i.e., when the 
utility aspect is ignored, =1 and α→1, 
the measure (2.1) reduces Shannon’s (1948) 
entropy, i.e.,

 
                        (2.5)

Ⅴ.	 ‌�When β=1, =1, =1,2,…,n, i.e., when the 
utility aspect is ignored, =1, α→1, and 

1,2,…,n, the measure (2.1) reduces 
to maximum entropy, i.e.,

                           (2.6)

Ⅵ.	 ‌�When α→1, the measure (2.1) reduces to use-
ful information measure for the incomplete 
power distribution  due to Sharma, Man 
Mohan, and Mitter (1978), i.e., 

                    (2.7)

Ⅶ.	 ‌�When α→1, =1, =1,2,…,n, i.e., when the 
utility aspect is ignored, (2.1) reduces to a 
measure of incomplete power probability dis-
tribution due to Mitter and Mathur (1972), i.e.,

                        (2.8)

Further, we define a two parametric new generalized 
useful average code-word length corresponding to (2.1) 
and is given by

         (2.9)

Where 0<α<1,0<β≤1, ≥0  =1,2,…, ≤1 
and D is the size of code alphabet.

Remarks for (2.9)
Ⅰ.	 ‌�When β=1, (2.9) reduces to ‘useful’ average 

codeword length due to Taneja, Hooda, and 
Tuteja (1985), i.e.,

       (2.10)

Ⅱ.	 ‌�When β=1, =1, =1,2,…,n, i.e., when the utili-
ty aspect is ignored and  =1, (2.9) reduces 
to exponentiated mean codeword length due to 
Campbell (1965) entropy, i.e.,

          (2.11)

Ⅲ.	 ‌�When β=1 and α→1, (2.9) reduces to ‘useful’ code-
word length due to Guiasu and Picard (1971), i.e.,

                       (2.12)

Ⅳ.	 ‌�When β=1, =1, =1,2,…,n, i.e., when the 
utility aspect is ignored, =1 and α→1, (2.9) 
reduces to optimal codeword length defined by 
Shannon (1948), i.e., 

                         (2.13)

Ⅳ.	 ‌�When β=1, =1, =1,2,…,n, i.e., when the utility 
aspect is ignored, =1,α→1, and  =  =  = 

 = 1, then (2.9) reduces to 1.

Now we derive the lower and upper bound of (2.9) 
in terms of (2.1) under the condition

                        (2.14)

This is a generalization of Kraft’s inequality (1.2). It 
is easy to see that when β=1, =1,  =1,2,…,n, i.e., 
when the utility aspect is ignored and =1,then 
the inequality (2.14) reduces to Kraft’s (1949) inequal-
ity (1.2). A code satisfying (2.14) would be termed as a 
‘useful’ personal probability code.

Theorem 3.1: Let  and , satisfies 
the inequality (2.14), then the two parametric gen-
eralized ‘useful’ code-word length (2.9) satisfies the 
inequality

      (2.15)

Where   and  are defined in (2.1) and 
(2.9) respectively. Furthermore, equality holds good if
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                   (2.16)

Proof: By Holder’s inequality, we have

             (2.17)

For all >0, =1,2,3,…,n and <1(≠0), 
q<0 or q<1(≠0), p<0. We see the equality holds if there 
exists a positive constant c such that

                                 (2.18)

Making the substitution

Using these values in (2.17), and after suitable sim-
plification, we get

 
   (2.19)

Now using the inequality (2.14), we get

           
(2.20)

Or equation (2.20), can be written as

        
   (2.21)

Taking logarithms to both sides with base D to equa-
tion (2.21), we get

  
(2.22)

Or equivalently we can write equation (2.22), as

    (2.23)

As 0<β≤1, multiply equation (2.23) both sides by β, 
we get

   (2.24)

This implies

Hence the result for  

Now we will show that the equality in (2.15) holds if 
and only if

Or equivalently we can write

Or we can write

                (2.25)

Raising both sides to the power  , to equation 
(2.25), and after simplification we get

			 
             (2.26)

Multiply equation (2.26) both sides by , and 
then summing over i=1,2,…,n, both sides to the result-
ed expression and after suitable simplification, we get

			 

Or equivalently we can write

               (2.27)

Taking logarithms both sides with base D to equa-
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tion (2.27), then multiply both sides by , we get

	  
(2.28)

This implies

. Hence the result

Theorem 3.2: For every code with lengths  
satisfies the condition (2.14),  can be made to 
satisfy the inequality

  (2.29)

Proof: From the theorem (2.1) we have 

        , holds if and only if

        

Or equivalently we can write

Now we choose the code-word lengths , in 
such a way that they satisfy the inequality,

Consider the interval

of length unity. In every , there lies exactly one 
positive integer , such that,

(2.30)
Now we will first show that the sequence ,  

thus defined satisfies the inequality (2.14), which is a 
generalization of Kraft inequality.

From the left inequality of (2.30), we have

Or equivalently we can write

                               (2.31)

Multiply equation (2.31) both sides by  then sum-
ming over i=1,2,…,n, both sides to the resulted expres-
sion, and after suitable operations, we get the required 
result (2.14), i.e., 

Now the last inequality of (2.30), gives

Or equivalently we can write

                (2.32)

As 0<α<1, then(1-α)>0, and  > 0, raising both 
sides to the power  > 0, to equation (2.32), and 
after suitable operations, we get

	
Or equivalently we can write

          (2.33)

Multiply equation (2.33) both sides by , and 
then summing over i=1,2,…,n, both sides to the result-
ed expression and after suitable simplification, we get

Or equivalently we can write

           (2.34)

Taking logarithms with base D both sides to the 
equation (2.34), we get
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 (2.35)

As 0<α<1,0<β≤1 then(1-α)>0 and >0, multiply 
equation (2.35), both sides by >0, we get

This implies

 
Hence the result for  0<α<1,0<β≤1.

Thus from above two coding theorems, we have 
shown that

Where 0<α<1,0<β≤1.

In the next section we verify the noiseless coding 
theorems by considering the Shannon-Fano coding 
scheme and Huffman coding scheme by taking an em-
pirical dataset.

4. ILLUSTRATION

In this section we illustrate the veracity of the theo-

Table 1.  Using Huffman coding scheme the values of H αβ (P;U), H αβ (P;U) +β, L αβ (P;U)  and η for different values of α and β

0.41 1 1 6 0.9 1 1.987 2.012 98.757% 2.987

0.18 000 3 5 0.9 0.9 1.654 1.874 88.260% 2.554

0.15 001 3 1 0.8 1 2.016 2.079 96.969% 3.016

0.13 010 3 2

0.1 0110 4 4

0.03 0111 4 3

Table 2.  Using Shannon-Fano coding scheme the values of H αβ (P;U), H αβ (P;U) +β, L αβ (P;U)  and η for different values of α and β

0.41 00 2 6 0.9 1 1.987 2.217 89.625% 2.987

0.18 01 2 5 0.9 0.9 1.654 2.014 82.125% 2.554

0.15 100 3 1 0.8 1 2.016 2.226 90.566% 3.016

0.13 101 3 2

0.1 110 3 4

0.03 111 3 3
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Table 3.  Monotonic Behavior of H αβ (P;U) with Respect to α for fixed β=1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.260 2.221 2.182 2.146 2.112 2.078 2.047 2.017 1.988

rems 3.1 and 3.2 by taking empirical data as given in 
Tables 1 and 2 on the lines of A. H. Bhat and M. A. K. 
Baig (2016).

Using Huffman coding scheme the values of 
 and η for different val-

ues of α and β are shown in the following table 1.
Now using Shannon-Fano coding scheme the values 

of  and η for different 
values of α and β are shown in the following table 2.

From Tables 1 and 2 we infer the following:
Ⅰ.	‌�Theorems 3.1 and 3.2 hold both the cases of 

Shannon-Fano codes and Huffman codes, i.e. 

      where 0<α<1,0<β≤1.
Ⅱ.	‌�Huffman mean code-word length is less than 

Shannon-Fano mean code-word length.
Ⅲ. ‌	 ‌�Coefficient of efficiency of Huffman codes is 

greater than coefficient of efficiency of Shan-

non-Fano codes; i.e., it is concluded that Huff-
man coding scheme is more efficient than Shan-
non-Fano coding scheme.

5. MONOTONIC BEHAVIOR OF THE TWO 
PARAMETRIC NEW GENERALIZED ‘USEFUL’ 
INFORMATION MEASURE Hα

β (P;U) 

In this section we study the monotonic behavior of 
the new two parametric generalized ‘useful’ informa-
tion measure  given in (2.1) with respect to the 
parameters α and β.

Let P=(0.41, 0.18, 0.15, 0.13, 0.10, 0.03) be a set of 
probabilities. Assuming β=1 we calculate the values of 

 for different values of α as shown in the fol-
lowing table 3.

Next we draw the graph of the table (3) and illustrate 
from Figure 1 that  is monotonic decreasing 

Fig. 1 Monotonic behavior of H αβ (P)  with respect to α for fixed β=1
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Table 4.  Monotonic Behavior of H αβ (P;U)  with Respect to β for fixed α=0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.026 0.102 0.222 0.383 0.580 0.811 1.072 1.361 1.677 2.017

Fig. 2 Monotonic behavior of H αβ (P;U) with respect to β for fixed α=0.8

with increasing values of α.
Now assuming α=0.8 we calculate the values of 

 for different values of β as shown in the fol-
lowing table 4.

Next we draw the graph of the table (4) and illustrate 
from Figure 2 that  is monotonic increasing 
with increasing values of β.

6. PROPERTIES OF THE NEW TWO 
PARAMETRIC GENERALIZED ‘USEFUL’ 
INFORMATION MEASURE Hα

β (P;U)  

In this section we will discuss some properties of the 
two parametric new generalized ‘useful’ information 
measure  given in (2.1):

Property 6.1:  is non-negative.

Proof: From (2.1), we have

From Tables 1 and 2, it is observed that  is 
non-negative for given values of α and β.

Property 6.2:  is a symmetric function on 
every =1,2,3,… ,n.

Proof: It is obvious that  is a symmetric 
function on every  =1,2,3,… ,n.i.e., 

Property 6.3:  is maximum when all the 
events have equal probabilities.
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Proof: When  and β=1,α→1. and 
, i.e., when the utility aspect is 

ignored, . Then , which is 
maximum entropy.

Property 6.4:  satisfies the additivity of the 
following form:

Where 
 

Proof: Let 

Taking R.H.S= 

		

 

Property 6.5:  is concave function for 

Proof: From (2.1), we have

If , i.e., when the 

utility aspect is ignored, and . then the first 
derivative of (2.1) with respect  is given by

And the second derivative is given by 

For all 

Since the second derivative of  with respect 
to  is negative on given interval  =1,2,…,n. as 

, i.e., when the utility 
aspect is ignored, and , therefore,

7. CONCLUSION

In this paper we define a new two parametric gen-
eralized ‘useful’ entropy measure, i.e.,  This 
measure also generalizes some well-known information 
measures already existing in the literature of ‘useful’ 
information theory. Also we define a new two paramet-
ric generalized ‘useful’ code-word mean lengths, i.e., 

 corresponding to , and then we char-
acterize  in terms of  and showed that

where 

Further we have established the noiseless coding 
theorems proved in this paper with the help of two 
different techniques by taking experimental data and 
showed that Huffman coding scheme is more efficient 
than Shannon-Fano coding scheme. We have also 
studied the monotonic behavior of  with re-
spect to parameters α and β. The important properties 
of  have also been studied.
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