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Constitutive modeling for rock joints of tunnel

암 절리에 한 정식 링

*

Park, Inn-Joon

Abstract

The purpose of this research is to develop improved model for joints of tunnel based on Disturbed

State Concept (DSC) model. DSC model is verified with respect to comprehensive laboratory tests

performed by Schneider and back prediction results. Based on results of this research, it can be

stated that DSC model is capable of characterizing the strain softening and dilative behavior of

rough granite joints under four different constant normal stresses.
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지

본연 목적 란상태개 용하여 암 절리 거동특 링할수 는개(DSC)

정식 개 하는 다 란상태개 미다 접촉 거동 링 통해. (DSC)

그신뢰 검 아 다 런 암 절리 거동특 에맞도 수정한후에 가수행한. DSC , Schneider

합리적 실내전단시험결과 역해 결과 용하여 절리 적용 검 하고 한다 본DSC .

연 결과 강암절리 변 연 피 창거동특 규 할수 다고 단 다DSC .

주 어: 암 절리 란상태개 역 해 변 연 피 창 거동, , , ,

학술 술 제 제 월4 2 2002 6

1. Introduction

In practice, we meet a number of problems

associated with rock joints and discontinuities. In

tunnel engineering, stability of supporting columns

which contain rock joints or faults is a main concern.

And in geotechnical engineering, they have pro-

blems such as slope stability, foundation and under-

ground openings, which are related to the behavior

of rock joints and faults involved. Therefore,

joints, faults, and discontinuities play a vital role

in rock and tunnel engineering practices.

The behavior of the discontinuous joints is different

from that of the continuous solid materials. The

shear strength of a solid comes from the strong

internal cohesion, while the shear strength of a joint
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is mainly derived from contact friction which

involves many types of mechanisms, such as inter-

locking, ploughing, and damaging of the asperities.

Therefore, the modeling of the joints involves

significant complexity and is very important. Rational

constitutive models can only be obtained through

careful study of their special features in addition to

those of continuous solids, and also through con-

sideration of the basic mechanics and laboratory

testing and verification.

This research aims to investigate the strength and

deformation behavior of the joints or discontinuities

under various loading conditions. The objectives of

the investigation can be summarized as follows:

1) To modify the disturbed state concept theory for

its application to the rock joint modeling.

2) To develop the model capable of describing and

predicting the hardening and softening behavior

of the rock joints under various stress path

conditions.

3) To utilize the proposed model and verify it with

respect to experimental data on rock joints.

4) To analyze the size effect of the joints in mode-

lling.

Several models have been developed for defining

the behavior of joint. There are two types of joint

models: failure model and elasto-plastic model.

1.1 Failure models

Failure models describe the shear stress in relation

to the normal stress and other parameters. This

relation is generally nonlinear as long as the range

of the normal stress is wide enough. Usually, the

shear stress reaches a peak value and then decr-

eases to a residual value. This phenomenon is termed

softening as found in most rocks (Goodman, 1974;

Hoek and Bray, 1974). In failure models, emphasis

is focused mainly on the modeling of peak and

residual shear stresses.

Barton and Chouby(1977) proposed a failure model

for peak shear strength of rock joints after sum-

marizing extensive tests upon specially prepared

artificial rock joints. The peak shear strength was

expressed as

τ σ
σ

φ (1)

where JRC and JCS are the Joint Roughness

Coefficient and Joint Compression Strength res-

pectively, and φ is the residual friction angle.

Schneider(1975) modified Patton’s bilinear model by

combining the angle of asperities of natural rock

joints.

Most failure models described the above attempt to

relate the shear strength of a rough joint with the

slope angle or the shear strength with the strength

of the asperities. However, failure models do not

give the description of the stress-strain relationship

which is necessary for calculations involved with

displacements other than the strength of the joints.

The elastic and elasto-plastic models are capable of

providing the stress-strain relationship as discussed

below.

1.2 Elastic and elasto-plastic models

Goodman, Taylor, and Brekke (1971) proposed a

nonlinear model for rock joints. This model has the

off-diagonal terms of the stiffness matrix which are

considered as the coupling terms between the shear

and normal behavior. Ghaboussi and Wilson (1973)

proposed the possible application of the plasticity

theory in joint modeling by assuming the association

flow rule. The yield functions used here are the

Mohr-Coulomb failure law for non-dilatant joint, and

the Cap (DiMaggio and Sandler, 1971) model of yield

functions for dilatant joint. Zienkiwicz et al. (1977)
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proposed an elastic-viscoplastic model for joint.

The yield function F used is the Mohr-Coulomb

failure law. Both associative and non-associative

potential function Q has a similar type as the yield

function. Plesha (1987) proposed a non-associative

plasticity joint model. The main feature of this

model is to use a parameter called the asperity angle

to characterize the strength and deformation behavior

of the joint. At the same time, Desai and Fishman

(1987) developed a non-associative plasticity model

by specializing a general 3-D Hierarchical Single

Surface model (HiSS Model) (Desai et al., 1984,

1986). The yield function F and the displacement

potential function Q are expressed as

τ ασ γσ (2)

τ α σ γσ (3)

where n and γ are material constants, α is the

hardening function, and α is the non-associative

hardening function. This model can be used for both

quasi-static and cyclic loading conditions. However,

softening can not be captured.

In this paper, a modified version of Disturbed

State Concept (DSC) model (Desai, 1992; Desai,

1995; Park, 1997) is proposed to model both

hardening and softening behavior with a frame-

work that can include a number of important

characteristics of joints

2. Disturbed sate concept modeling
for joint of rock

The disturbed state concept (DSC) extends cont-

inuum theory representations of material behavior

to include observed nonhomogeneous and discont-

inuous behavior such as microcracking, damage, and

softening. It is based on the DSC that allows

incorporation of microstructural changes due to the

applied forces, that cause transitions in the material

from relative intact (RI) state, through a process of

natural self adjustment, to the fully adjusted or

critical (FA) state. The process of transition from

the RI to FA state involves changes in the microst-

ructural properties of the joint material, affected by

factors such as roughness, asperities, particle size

and shape, and interparticle characteristics. The

observed material behavior is thus defined as a

combination of the two material reference states, RI

state and FA state, which are related through the

disturbance function, D (Fig. 1). The concept of the

disturbed state of a joint can be expressed by the

two reference states (RI and FA) and D.

The disturbed state for a joint is the inter-

mediate state from the original state until the

critical state is researched. During the disturbed

state, the damageable material and non-damageable

material co-exist. From the DSC theory for a joint

material (Desai, 1995), the damageable material repres-

ents those asperities that are broken or lose contact

during shearing, and those contacts that are separated

by the debris. The non-damageable material repres-

ents those asperities that are not breakable for the

given normal stress, and would include plateaus

formed and compacted gouge material formed during

shearing. Consequently, strain softening may result

if the joint becomes smoother.

To best describe the various references states for

jointed rock, a simple example is presented herein.

Consider a bucket filled with ice. When heated, the

ice will thaw into water. The ice represents the

material in its original state or RI state, while the

water represents the material in FA state, and

heating is the factor that causes the disturbance,

D. During the period starting from ice (RI state) and

ending with water (FA state), there are many inter-

mediate states where the container includes both ice
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and water. These intermediate states are said to be

in the disturbed state. During the disturbed state,

the ice changes gradually to water and there exists

a mixture of ice and water.

2.1 Idealization of a joint

A joint is the region of two opposing surfaces of

two contacting solids. The physical properties of a

joint are determined by these two surfaces and their

contact conditions. To mathematically model a joint

or interface, the joint is usually considered as a

planar surface with two joint walls and a contact

space (Fig. 2). Here, the contact space is the contact

zone of the opposing asperities and it can be

assigned as averaged thickness t. A coordinate system

can be established where the planar surface is

considered; the tangential direction with shear

stresses τ , and relative shear displacements , and

the direction orthogonal to the planar surface is the

normal direction with normal stresses σ , and relative

normal displacement . If T and N are the tangential

and normal forces applied (Fig. 2), and A0 is the

nominal joint area, then the normal and shear stresses

are:

τ (4)

σ (5)

The relative shear displacement , in contact zone

is composed of elastic shear deformation of the contact

asperities , plastic shear deformation of the contact

asperities , and slip displacement between the

contact asperities of the joint,

(6)

In an analogous manner, the relative normal

displacement, , can be defined as

(7)

If small strains are assumed, the joint thickness, t,

can be used to convert relative displacements into

equivalent strains. As t comes to zero, the in-plane

strain ε converges to zero and can be negligible. In

view of this, the in-plane stress, σ , will also be small

and can be negligible, particularly when the Poisson’s

ratio, ν, is small. In terms of two- dimensional

idealization, the strain-displacement relations are

Fig. 1 Schematic of stress-strain behavior (after

Park, 1997).

Fig. 2 Idealization of a joint.
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and the related stress components are
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2.2 Description of the RI state

The relative intact state is described using the

modified HiSS δ model (Desai and Wathugala, 1987).

The δ model is based on the associative plasticity

and isotropic hardening (potential function Q = yield

function F) rule. In this model, the yield function, F,

is given as:

τ ασ γσ (10)

where τ is the shear stress, σ is the normal stress,

and n and γ are material parameters. α is the

hardening function and it is expressed as

α
ξ

(11)

where a and b are material parameters and

trajectory of plastic shear strain, ξ , is given as:

ξ γ (12)

The yield surface F is a continuous set of convex

surface which expands toward an ultimate yield

surface during plastic shear deformation. The

ultimate surface, τ , which represents the asymptotic

failure stress, is found by setting α equal to zero:

τ γσ (13)

This plots a straight line with slope γ as shown

in Fig. 3. The locus of points expanding yield surface

(where the tangent to the yield surface is

parallel to the σ axis) is a line called the

“Phase Change Line”. By taking F=0 and
σ

, Eq.

(12) reduced to

τ
σ

γ (14)

Fig. 3 The yield surface of HiSS δ model in

space.

Fig. 4 The yield surface of HiSS δ model in stress

space.
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The phase change line also plots as a straight line

with slope γ in τ vs. σ space (Fig. 3) and

in stress space (Fig. 4).

2.3 Description of the FA state

The critical state is a steady state where the shear

stresses and normal displacement are stabilized.

The joint model at the critical state consists of two

parts: the modeling of the critical shear stress and

the modeling of the critical dilation. The failure

model proposed by Archard (1958) is a simple one

yet it gives a very good description of the shear

stress at the critical state. Archard's non-linear

power law model can be expressed as follows:

τ σ (15)

where and m are material parameters and the

superscript c refers to the critical condition. And the

final dilation at the critical state, , is found to have

a relation with the normal stress (Schneider, 1975),

as

σ (16)

where is the maximum dilation when σ is equal

to zero and k is a material parameter.

2.4 Description of DSC function

The proposed function for D (scalar) employed in

this research was used by Armaleh and Desai (1990):

ξ (17)

where Du is the ultimate disturbance. Initially with

no disturbance the material is assumed to be

entirely in the RI state, so D is zero. With full

disturbance the material is assumed to be fully in

FA state, and at an ultimate state, Du. Theoretically,

the disturbance, D, varies between 0 and 1, but many

materials fail in an engineering sense before D

reaches unity. A and Z are material parameters. This

disturbance function will be used twice to define a

shear stress relationship using disturbance, τ, and an

effective normal stress relationship using disturbance,

. Each curve in Fig. 5 is a representation of Eq.

(20).

3. Incremental formulation for back

prediction program

3.1 Derivation of the intact incremental

stress-strain relation

Derivation of the intact incremental stress-strain

relations follows the traditional elastoplasticity

formulation procedure (Desai and Wathugala, 1987).

Let the following vectors be defined

σ
σ
τ

(18)

Fig. 5 Schematic of DSC function (after Park, 1997).



Constitutive modeling for rock joints of tunnel

Tunnelling Technology, Vol.4, No.2, June 2002 107

ε
ε
γ

(19)

From the elastic stress-strain relationship and

the flow rule for plasticity, an incremental form of

the intact stress vector can be found as

σ ε λ (20)

where is the elastic constitutive matrix and is

given by,

(21)

where kn and ks are the normal and shear stiffness

of the interface material. And employing the con-

sistency condition of the yield function (dF=0), λ can

be found as

λ
σ

ε

σ α

(22)

and substituted into Eq. (20) to yield the cons-

titutive relationship desired,

σ ε (23)

where the elasto-plastic matrix takes the form







σ

σ α







(24)

where L is defined as

α
ξ

ξ (25)

for the hardening function defined in Eq. (25) where

are McAuley's brackets.

(26)

3.2 Derivation of the DSC incremental

stress equation

Assuming the thickness of joint is the same for

all three material phases, equilibrium of forces in

the disturbed material, and the definition of distur-

bance in Eq. (17), the following relationship between

phase stresses can be derived

σ

τ

σ

τ τ

σ

ττ
(27)

where the normal disturbance function, , can be

used to model the relative normal displacements and τ,

is the disturbance function for relative shear

displacements.

Differentiating Eq. (27),

σ

τ

σ

τ τ

σ

τ τ

σ σ

τ τ τ

(28)

If there is no change in stresses at FA state, σ

and τ are zero. Substituting Eqs. (15) and (23) into

Eq. (28) gives the DSC incremental stress- strain

equations,

σ

τ

ε γ

τ ε γ

σ σ

τ τ τ

(29)

and

σ ε σ σ (30)

where the term σ σ contributes negative

values during softening and [CDSC] is DSC con-
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stitutive matrix.

4. Model parameters

The proposed joint model involves a number of

material constants which can be determined from a

series of shear tests on joints or interfaces. The

material constants can be divided into three cate-

gories: parameters for RI material, the constants

for FA material, and the disturbance function

parameters. The material constants are all listed in

Table 1. There are eleven parameters needed for the

DSC joint model.

5. Verification of DSC model for rock
joints

The disturbed state joint model derived and

modified in previous section is verified with respect

to comprehensive laboratory tests performed by

Schneider (1974). For verification, the model back

predictions are obtained by numerical integration

formulation based on Equation(30).

Schneider (1974) performed a series of well

Category Parameter Comments

RI Material

E Young's Modulus

Poisson's Ratioυ

n Phase Change Parameter

Ultimate Parameterγ

a Hardening Parameter

α
ξb

FA Material

C0

Critical Parameterv0

κ

DSC Function , ξ

τξ
τ

τ, τ

Table 1. DSC joint parameters.

Fig. 7 Dilative response for granite joint with σn
=1.77MPa.

Fig. 8 Dilative response for granite joint with σn
=1.38MPa.

Fig. 9 Dilative response for granite joint with σn
=0.69MPa.

Fig. 10 Dilative response for granite joint with σn
=0.34MPa.
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designed shear tests. The samples of the joints are

replicas made of plaster casts from a same natural

rock joints. In doing so, many similar joints samples

were produced and the influence of the normal

stresses on the joint behavior was studied. For this

research, the granite joint is utilized and

investigated. The granite joint is relatively rough

and has a high degree of indentation both on the

microscopic as well as on the macroscopic scale.

For the granite joint, four tests were performed

under different constant normal stresses. The

normal stresses are 1.77MPa, 1.38MPa, 0.69MPa, and

0.34MPa, respectively. The back predictions of the

four tests are shown from Fig.6 to Fig.10 and model

parameters used in the back predictions are listed in

Table 2. Fig. 6 shows the back prediction of the

shear responses for the four tests under the four

different normal stresses. the normal stress σn is

kept constant during each test and severe softening

occurs for all four tests. Fig. 7 to Fig. 10 show the

back predictions of the dilative responses.

In Fig. 6, it is shown that the back predictions

have predicted softening behavior of the granite

joint. The back predictions are very satisfactory for

the two shear tests with low value of normal stresses

(0.69MPa and 0.34MPa). Reasonably good predictions

are shown for the two shear tests with higher

normal stresses (1.77MPa and 1.38 MPa), but the

high peaks of the shear stresses are not predicted

by the back predictions. This is because the material

parameters are found through an average process

and the number of data points for the high peaks

are too few to input a significant influence.

The difference of the normal stresses used in the

tests are large enough to cause a significant change

in the dilative behavior for different normal stresses

from Fig. 7 to Fig. 10. The back predictions for the

dilative behavior are very good except for the test

Category Parameter Values

E En=5.6MPa, Es=28.0MPa

υ 0.30

RI Material n 2.31

γ 3.24

a 0.065

b 1.42

FA Material

C0 0.90

v0 4.96

κ 1.21

DSC Function , An= 3.87, Zn=0.36

τ, τ Aτ=3.88. Zτ=0.90

Table 2. Model parameters for back predictions.

Fig. 6 Shear response for granite joint.
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with normal stress σn=1.77MPa, where large

discrepancy can be observed in Fig. 7. This large

discrepancy is due to the non-regularity of the data

obtained from the test, possibly due to a catas-

trophic damage occurred to the asperities under

such a high normal stress and consequently, the

dilation reduces to a very small value at large stage

of the shear process.

6. Conclusions

The disturbed state modeling provides a powerful

way of describing the behavior of joints of tunnel.

It is based on the assumption that the behavior of

a joint, or the behavior at the disturbed state can

be expressed by the joint behavior at its reference

states.

The reference states include the original (RI) state

and critical (FA) state. Basic models can be used to

describe the simple behavior at the reference state

and the complex behavior at the disturbed state can

be described by using the disturbed state joint

model.

From this study, the behavior of intact joint is

modeled by using a general plasticity model with

minor modifications. The FA state is modeled

according to the observations from the shear tests

of joints. The DSC joint model based on two reference

states thus developed is capable of describing the

hardening and softening behavior of a joint under

various stress paths.

The model can be easily implemented in numerical

integrated formulation procedures and requires a

realistic number of parameters for general use.

Finally, this model is capable of capturing essential

rock joint behavior including strain softening using

back prediction scheme.
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