바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Seismic Analysis of Tunnel Considering the Strain-Dependent Shear Modulus and Damping Ratio of a Jointed Rock Mass

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2010, v.12 no.4, pp.295-308


(KAIST)

  • Downloaded
  • Viewed

Abstract

Contrary to an intact rock, the jointed rock mass shows strain-dependent deformation characteristics (elastic modulus and damping ratio). The maximum elastic modulus of a rock mass can be obtained from an elastic wave-based exploration in a small strain level and applied to seismic analyses. However, the assessment and application of the non-linear characteristics of rock masses in a small to medium strain level (10-4~0.5%) have not been carried out yet. A non-linear dynamic analysis module is newly developed for FLAC3D to simulate strain-dependent shear modulus degradation and damping ratio amplification characteristics. The developed module is verified by analyzing the change of the Ricker wave propagation. Strain-dependent non-linear characteristics are obtained from disks of cored samples using a rock mass dynamic testing apparatus which can evaluate wave propagation characteristics in a jointed rock column. Using the experimental results and the developed non-linear dynamic module, seismic analyses are performed for the intersection of a shaft and an inclined tunnel. The numerical results show that vertical and horizontal displacements of non-linear analyses are larger than those of linear analyses. Also, non-linear analyses induce bigger bending compressive stresses acting on the lining. The bending compressive stress concentrates at the intersection part. The fundamental understanding of a strain-dependent jointed rock mass behavior is achieved in this study and the analytical procedure suggested can be effectively applied to field designs and analyses

keywords
Jointed rock mass resonance test, Strain-dependent non-linear behavior, Hyperbolic model, Non-linear seismic analysis, Jointed rock mass resonance test, Strain-dependent non-linear behavior, Hyperbolic model, Non-linear seismic analysis, 절리암반 공진주 시험, 변형률 의존적 비선형 거동, 쌍곡선 모델, 비선형 내진해석

Reference

1.

1. 건설교통부 (1997), 내진설계 기준(II).

2.

2. 김주원 (2008), “절리 암반의 변형률 의존적 탄성파 전파특성 분석을 위한 RMDT 장비의 개발”, 석사학위 논문, KAIST, Korea.

3.

3. 박삼규, 김정호, 조성준, 이명종, 손정술 (2003), “전기비저항 및 탄성파속도를 이용한 터널암반의 정량적 평가 수법과 적용성”, 터널기술, 한국터널공학회 논문집, 제5권, 제3호, pp. 291-299.

4.

4. 송기일, 김주원, 조계춘 (2007), “터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구”, 터널기술, 한국터널공학회 논문집, 제9권, 제2호, pp. 109-120.

5.

5. 이종섭, 엄현석, 김동현, 이인모 (2008), “표면파에 대한 웨이블렛 변환을 이용한 모형 암반의 위상속도 예측”, 터널기술, 한국터널공학회 논문집, 제10권, 제1호, pp. 1-11.

6.

6. 정성훈 (2009), “절리 암반의 변형률 의존적 거동에 대한 특성파악 및 지하구조물 해석에서의 적용”, 석사학위 논문, KAIST, Korea.

7.

7. Boadu, F.K. and Long, T.L. (1996), “Effects of fractures on seismic wave velocity and attenuation”, Geophys. J. Int., Vol. 127, pp. 86-110.

8.

8. Brillouin, L. (1946), Wave propagation in periodic structures, New York: McGraw-Hill.

9.

9. Cai, J.G. and Zhao, J. (2000), “Effects of multiple parallel fractures on apparent wave attenuation in rock masses”, Int. J. Rock Mech. Miner. Sci., Vol. 37, No. 4, pp. 661-682.

10.

10. Cha, M., Cho, G.C. and Santamarina, J.C. (2009), “Long -wavelength P-wave and S-wave propagation in jointed rock masses”, Geophysics, Vol. 74, Issue 5, p. E205.

11.

11. Fratta, D. and Santamarina, J.C. (2002), “Shear wave propagation in jointed rock: state of stress”, Géotechnique, Vol. 52, No. 7, 495-505.

12.

12. Hardin, B.O. and Drnevich, V.P. (1972), “Shear modulus and damping in soil: design equations and curves”, Journal of the Soil mechanics and Foundation Engineering Division, ASCE, Vol. 98, No. 7, pp. 667-692.

13.

13. Howie, J.A. and Amini, A. (2005), “Numerical simulation of seismic cone signals”, Can. Geotech. J., Vol. 42, No. 2, pp. 574-586.

14.

14. Ishihara, K. (1986). “Evaluation of soil properties for use in earthquake response analysis”, in Geomechanical Modeling in Engineering Practice, Eds. R. Dungar and J. A. Studer, A. A. Balkema Publishers, Rotterdam.

15.

15. Itasca Consulting Group Inc. (2006), FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) version 3.1. Itasca consulting group, Minneapolis, Minn.

16.

16. Pyrak-Nolte, L.U., Myer, L.R. and Cook, N.G. (1990a), “Transmission of seismic wave across single natural fracture”, Journal of Geophysical research, Vol. 95, No. B6, pp. 8617-8638.

17.

17. Pyrak-Nolte, L.U., Myer, L.R. and Cook, N.G. (1990b), “Anisotropy in seismic velocities and amplitudes from multiple parallel fractures”, Journal of geophysical research, Vol. 95, No. B7, pp. 11345-11358.

18.

18. Pyrak-Nolte, L.J. and Nolte, D.D. (1995), “Wavelet analysis of velocity dispersion of elastic interface waves propagating along a fracture”, Geophys. Res. Lett., Vol. 22, No. 11, pp. 1329-1332.

19.

19. Pyrak-Nolte, L.J., Roy, S. and Mullenbach, B.L. (1996), “Interface waves propagated along a fracture”, Journal of Applied Geophysics, Vol. 35, Issues 2-3, pp. 79-87.

20.

20. Ramberg, W. and Osgood, W.R. (1943). “Description of stress-strain curves by three parameters”, Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC.

21.

21. Richart, F.E., Hall, J.R. and Woods, R.D. (1970), “Vibration of soils and foundations”, Civil Engineering and Engineering Mechanics Series. Prentice Hall, Englewood Cliffs, N.J., p. 414.

22.

22. Ricker, N. (1945), “The computation of output disturbances from amplifiers for true wavelet inputs”, Geophysics, Vol. 10, pp. 207-220.

23.

23. White, J.E. (1983), Underground sound: Application of seismic waves, Amsterdam, Elsevier.

24.

24. Zhao, X.B., Zhao, J., Cai, J.G. and Hefny, A.M. (2008), “UDEC modelling on wave propagation across fractured rock masses”, Computers and Geotechnics, Vol. 35, pp. 97-104.

(사)한국터널지하공간학회