바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

절리 암반터널 내 그라우팅 전∙후의 암반 투수계수 및 그라우팅 주입량과 Q 시스템 항목들과의 상관관계 연구

A study on the correlation between the rock mass permeability before and after grouting & injection volume and the parameters of Q system in a jointed rock mass tunnel

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2012, v.14 no.6, pp.617-635
유광호 (수원대학교)
지홍근 (대우건설)
서경원 (대우건설 기술연구원)
김수정 (한국방사성폐기물관리공단)
유동우 (한국시설안전기술공단)
  • 다운로드 수
  • 조회수

초록

본 연구에서는 그라우팅이 실시된 4~5 등급(Q 분류의 1 이하)에 해당 되는 암반 터널을 대상으로, 그라우팅 전 후의 암반 투수계수 및 그라우팅 주입량과 Q분류법의 파라미터들간의 상관관계를 분석해 보았다. 연구 대상 터널의 경우 Q 값이 작을수록 그라우팅 전 암반 투수계수는 커지며, 그라우트의 주입량은 작아지는 것으로 나타났다. 또한 투수계수 및 주입량에 가장 큰 영향을 미치는 요인은 RQD 및 절리군수(Jn)인 것으로 나타났다. 또한 보통시멘트를 주입재로 한 암반터널 그라우팅 작업에서 투수계수를 $1.0{\times}10^{-8}$ m/sec이하로 낮추는 것은 매우 어려운 것으로 나타났다.

keywords
터널 그라우팅, 투수계수, 주입량, Q 분류법, Tunnel grouting, coefficient of permeability, injection volume, Q system

Abstract

In this study, correlations between the rock mass permeability before and after grouting & injection volume and the parameters of Q system were investigated on a grouted rock mass tunnel corresponding to rock class 4 and 5 in terms of Q classification system. As a result, it appears that the lower the Q value is, the higher the before-grouting permeability becomes and the smaller the injection volume of grouting becomes. Also RQD and Jn are the most influencing factors to the permeability of rock mass and the injection volume of grouting. In addition, it turned out that it was very difficult to lower the permeability of rock mass smaller than $1.0{\times}10^{-8}$ m/sec with the ordinary portland cement grout.

keywords
터널 그라우팅, 투수계수, 주입량, Q 분류법, Tunnel grouting, coefficient of permeability, injection volume, Q system

참고문헌

1.

Chun, B.S., Choi, J.K. (2003), “A study on the reinforcement of rock faults grouting”, Journal of Korean Geo-Environmental Society, Vol. 4, No. 4, pp. 45-51.

2.

Im, E.S., Shin, D.H., KIm, J.H., Kim, W.Y. (2007), “Monitoring of electrical resistivity for grouting effect”, The 2007 Conference of Korean Geo-Environmental Society, pp. 69-73.

3.

Japan Atomic Energy Agency, www.jaea.or.jp

4.

Kim, D.K., Kim, G.W. (2001), “Field experiments on the cutoff grouting around waterway tunnel”, The Journal of Engineering Geology, Vol. 11, No. 1, pp. 81-99.

5.

Kim, T.H., Lee, J.I. (2000), “The effect of cement milk grouting on the deformation behaviour of artificial rock joints”, Journal of Korean Society for Rock Mechanics, Vol. 10, No. 2, pp. 180-195.

6.

Kong, J.Y., Kim, C.K., Park, J.H., Chun, B.S. (2010), “Grouting effects of micro-fine cement in the rock-based sites”, Journal of Korean Geo-Environmental Society, Vol. 11, No. 12, pp. 37-45.

7.

Lee, J.S., Sagong, M., Hwang, S.G., Lee, D.S., Kim, K.R. (2004), “Estimation of the waterproof grouting thickness around tunnel”, The 2004 Spring Annual Conference of Korea Tunnelling Aosication, pp. 105-127.

8.

Nick Barton (2007), Rock quality, seismic velocity, attenuation and anisotropy, Taylor & Francis Group, pp. 159-177.

9.

Seo, Y.H., Nam, H.Y., Ju, K.S., Jang, S.B., Hur, D.H., Lee, S.C. (2010), “An introduction of the design for the first subsea road tunnel (Boryeong tunnel) in Korea”, The News Letter of Korean Tunnelling Association, Vol. 12, No. 3, pp. 30-38.

10.

Yea, G.G. (2009), “The impermeable effect for bedrock constructed by grouting”, Journal of Korean Geo-Environmental Society, Vol. 10, No. 2, pp. 51-59.

11.

You, K.H., Kim, E.H. (2010), “A study on the stability analysis for grouting reinforcement in a subsea tunnel”, Journal of Korean Tunnelling and Underground Space Association, Vol. 12, No. 2, pp. 145-155.

(사)한국터널지하공간학회