바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

A study on the discharge pipes wear of slurry shield TBM in rock strata

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2017, v.19 no.01, pp.57-70
https://doi.org/10.9711/KTAJ.2017.19.1.057



  • Downloaded
  • Viewed

Abstract

In this study, we investigated the wear measurement methods for slurry pipe applied in the field of mining and oil sand industry and theoretical equations related to the prediction of wear in slurry pipe through literature review. Average daily wear rate and wear rate per excavated distance were determined from slurry discharge pipe thickness measurement data periodically measured at the actual slurry shield TBM site in Singapore. The wear rate of slurry pipe for Bukit Timah Granite was obtained. The wear rates for G (V) grade and mixed zone were 1.5 times higher than that of G (I) to G (IV) grade. Slurry pipe wear rate tended to increase in proportion to the slurry discharge velocity. The optimal slurry pipe replacement or rotation frequency can be estimated through the selection of the pipe wear rate considering geological condition and the reasonable pipe management thickness.

keywords
슬러리 파이프, 마모도, 파이프 교체주기, 쉴드TBM, Slurry pipe, Wear, Pipe replacement frequency, Shield TBM

Reference

1.

1. Bergeron, P. (1950), “Similarity conditions for erosion caused by liquids carrying solids in suspension. Application to centrifugal pump impellers”, La Houille Blanche, 5, Spec. No. 2, pp. 716-729.

2.

2. BHRA (2015), “Slurry Handling Course: Pumping & Pipeline Design”, pp. 102-115.

3.

3. Cooke, R., Johnson, G. (1999), “Laboratory apparatus for evaluating slurry pipeline wear”, 14th Int. Conf. on Slurry Handling and Pipeline Transport, pp. 38-42.

4.

4. Duhme, R., Tatzki, T. (2015), “Designing TBMs for subsea tunnels”, Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 587-596.

5.

5. Durand, R., Condolios, E. (1952), “Colloquium on the Hydraulic Transport of Coal”, National Coal Board, London, paper IV, pp. 39-52.

6.

6. Henday, G. (1988), “A comparison of commercial pipe materials intended for the hydraulic transport of solids”, BHRA Report RR2988.

7.

7. Huggett, P.G., Walker, C.I. (1988), “Development of a wear test to simulate slurry erosion”, Proc of Hydrotransport 11, Paper K1, pp. 495-505.

8.

8. Karabelas, A.J. (1978), “An experimental study of pipe erosion by turbulent slurry flow”, Proc. Hydrotransport 5, Paper E2, pp. 15-24.

9.

9. Kawashima, T., Yagi, T., Ise, T., Sato, E., Washimi, H., Yokogawa, A. (1978), “Wear of pipes for hydraulic transport of solids”, Proc. Hydrotransport 5, Paper E3, pp. 25-44.

10.

10. Miller, J.E. (1974), “Miller Number”, Chem Engng, 22, pp. 103-106.

11.

11. Oroskar, A.R., Turian, R.M (1980), “The critical velocity in pipeline flow of slurries”, AIChE Journal, 26(4), pp. 550-558.

12.

12. Park, H., Oh, J.Y., Chang, S., Lee, S. (2016), “Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock”, Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 1, pp. 61-74.

13.

13. Roh, B.K., Koh, S.Y., Choo, S.Y. (2012), “Infiltration behaviour of the slurry into tunnel face during slurry shield tunnelling in sandy soil”, Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 3, pp. 261-275.

(사)한국터널지하공간학회