바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2019, v.21 no.4, pp.501-518
https://doi.org/10.9711/KTAJ.2019.21.4.501




  • Downloaded
  • Viewed

Abstract

The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson’s ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

keywords
고준위 방사성폐기물장, THM 복합 환경, KURT 화강암, 암석의 역학적 물성 변화, High-level radioactive waste disposal repository, THM coupled condition, KURT granite, Change of mechanical rock property

Reference

1.

1. Ahrens, B., Duda, M., Renner, J. (2018), “Relations between hydraulic properties and ultrasonic velocities during brittle failure of a low-porosity sandstone in laboratory experiments”, Geophysical Journal International, Vol. 212, No. 1, pp. 627-645.

2.

2. Atkinson, B.K. (1984), “Subcritical crack growth in geological materials”, Journal of Geophysical Research: Solid Earth, Vol. 89, No. B6, pp. 4077-4114.

3.

3. Cho, H.J., Moon, J.K., Jeong, I.S. (2012), “A study on decreasing behavior of strength & elastic parameters due to water infiltration in rock cores (I)”, Journal of the Korean Geotechnical Society, Vol. 28, No. 9, pp. 69-83.

4.

4. Cho, W.J., Kim, J.S., Kim, G.Y. (2019), “Effects of excavation damaged zone on thermal analysis of multi-layer geological repository”, Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 17, No. 1, pp. 75-94.

5.

5. Choi, S.B., Lee, S.D., Jeon, S.W. (2018), “Experimental study on the change of rock properties due to water saturation”, Tunnel and Underground Space, Vol. 28, No. 5, pp. 476-492.

6.

6. David, C., Menendez, B., Darot, M. (1999), “Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite”, International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No. 4, pp. 433-448.

7.

7. Heo, J., Lee, J.C., Seo, J.B., Park, S.H., Park, J.C., Kwon, S.K. (2014), “Variation of thermal and mechanical properties of crystalline granite under saturated-loading condition”, Tunnel and Underground Space, Vol. 24, No. 3, pp. 224-233.

8.

8. Hsu, S.C., Nelson, P.P. (1993), “Characterization of cretaceous clay-shales in North America”, Geotechnical Engineering of Hard Soils-Soft Rocks, Vol. 1, pp.139-146.

9.

9. Huang, Y.H., Yang, S.Q., Tina, W.L., Zhao, J., Ma, D., Zhang, C.S. (2017), “Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment”, Archives of Civil and Mechanical Engineering, Vol. 17, No. 4, pp. 912-925.

10.

10. IAEA (1981), Recommendations on underground disposal of radioactive wastes, Basic Guidance, Safety Series 54.

11.

11. Inada, Y., Kinoshita, N., Ebisawa, A., Gomi, S. (1997), “Strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperatures”, International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 3-4, pp. 140.e1-140.e14.

12.

12. ISRM (2007), The complete ISRM suggested methods for rock characterization, testing and monitoring:1974-2006, ISRM Commission on Testing Methods.

13.

13. Jianhong, Y., Wu, F.Q., Sun, J.Z. (2009), “Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads”, International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 3, pp. 568-576.

14.

14. Kim, G.Y., Kim, S.J., Koh, Y.K., Bae, D.S. (2004), “Mineralogical characteristics and genesis of phlogopite in the talc deposits of the Chungnam area, Korea”, Journal of the Mineralogical Society of Korea, Vol. 17. No. 3, pp. 221-233.

15.

15. Kitamura, K., Takahashi, M., Mizoguchi, K., Masuda, K., Ito, H., Song, S.R. (2010), “Effects of pressure on pore characteristics and permeability of porous rocks as estimated from seismic wave velocities in cores from TCDP Hole-A”, Geophysical Journal International, Vol. 182, No. 3, pp. 1148-1160.

16.

16. Lee, C.S., Kwon, S.K., Choi, J.W., Jeon, S.W. (2011), “An estimation of the excavation damaged zone at the KAERI underground research tunnel”, Tunnel and Underground Space, Vol. 21, No. 5, pp. 359-369.

17.

17. Lee, C.S., Yoon, S., Cho, W.J., Jo, Y.G., Lee, S.D., Jeon, S.W., Kim, G.Y. (2019), “Study on thermal, hydraulic, and mechanical properties of KURT granite and Gyeongju bentonite”, Journal of Nuclear Fuel Cycle and Waste Technology, Vol. 17, No. S, pp. 65-80.

18.

18. Lee, H.K., Kim, Y.G., Lee, H.S. (1998), “A study on characteristics of jointed rock masses and thermo-hydro-mechanical behavior of rock mass under high temperature”, Tunnel and Underground Space, Vol. 8, No. 3, pp. 184-193.

19.

19. Ozcelik, Y., Ozguven, A. (2014), “Water absorption and drying features of different natural building stones”, Construction and Building Materials, Vol. 63, No. 3, pp. 257-270.

20.

20. Park, H.I., Lee, J.D., Jung, J.I. (1977), Manuscript of drawing paper on Yoosung of Korea geological map, Korea Institute of Geoscience and Mineral Resources, Daejeon, pp. 21.

21.

21. Park, S.H., Heo, J., Lee, J.H., Park, J.C., Kwon, S.K. (2015), “An evaluation of the influence of the rock property change under saturated-loading conditions on rock stability”, Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 52, No. 3, pp. 309-321.

22.

22. Park, S.H., Kim, J.S., Kwon, S.K. (2018), “Investigation of the development of an excavation damaged zone and its influence on the mechanical behaviors of a blasted tunnel”, Geosystem Engineering, Vol. 21, No. 3, pp. 165-181.

23.

23. Török, A., Török, Á. (2015), “The effect of temperature on the strength of two different granites”, Central European Geology, Vol. 58, No. 4, pp. 356-369.

24.

24. Török, Á., Văsărhelyi, B. (2010), “The influence of fabric and water content on selected rock mechanical parameter of travertine, examples from Hungray”, Engineering Geology, Vol. 115, No. 3-4, pp. 237-245.

25.

25. Yoon, Y.K., Baek, Y.J., Jo, Y.D. (2011), “Effects of temperature and water pressure on the material properties of granite & limestone from Gagok mine”, Tunnel and Underground Space, Vol. 21, No. 1, pp. 33-40.

26.

26. Zhao, Y., Wan, Z., Feng, Z., Yang, D., Zhang, Y., Qu, F. (2012), “Triaxial compression system for rock testing under high temperature and high pressure”, International Journal of Rock Mechanics and Mining Sciences, Vol. 52, pp. 132-138.

27.

27. Zhou, Z., Cai, X., Zhao, Y., Chen, L., Xiong, C., Li, X. (2016), “Strength characteristics of dry and saturated rock at different strain rates”, Transactions of Nonferrous Metals Society of China, Vol. 26, No. 7, pp. 1919-1925.

(사)한국터널지하공간학회