바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Development of penetration rate prediction model using shield TBM excavation data

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2019, v.21 no.4, pp.519-534
https://doi.org/10.9711/KTAJ.2019.21.4.519



  • Downloaded
  • Viewed

Abstract

Mechanized tunneling methods, including shield TBM, have been increasingly used for tunnel construction because of their relatively low vibration and noise levels as well as low risk of rock-falling accidents. In the excavation using the shield TBM, it is important to design penetration rate appropriately. In present study, both subsurface investigation data and shield TBM excavation data, produced for and during ○○~○○ high-speed railway construction, were analyzed and used to compare with shield TBM penetration rates calculated using existing penetrating rate prediction models proposed by several foreign researchers. The correlation between thrust force per disk cutter and uniaxial compressive strength was also examined and, based on the correlation analysis, a simple prediction model for penetration rate was derived. The prediction results using the existing prediction models showed approximately error rates of 50~500%, whereas the results from the simple model proposed from this study showed an error rate of 15% in average. It may be said, therefore, that the proposed model has higher applicability for shield TBM construction in similar ground conditions.

keywords
쉴드 TBM, 굴착속도, 예측모델, 굴진성능, Shield TBM, Penetration rate, Excavation data, Prediction model

Reference

1.

1. Barton, N. (1999), “TBM performance estimation in rock using QTBM”, Tunnels and Tunnelling International, Vol. 31, No. 9, pp. 30-34.

2.

2. Bruland, A. (2000), Hard rock tunnel boring: Background and discussion, Ph.D. Thesis, Norwegian University of Science and Technology, pp. 14-31.

3.

3. Chang, S.H., Choi, S.W., Lee, G.P., Bae, G.J. (2011), “Rock TBM design model derived from the multivariate regression analysis of TBM driving data”, Journal of Korean Tunnelling and Underground Space Association, Vol. 13, No. 6, pp. 531-555.

4.

4. Cho, M.S., Woo, D.C., Kim, K.K., Lee, J.M. (2003), “Applicability analysis of empirical methods for the calculation of TBM advance rate”, Tunnel and Underground Space, Vol. 13, No. 4, pp. 260-269.

5.

5. Farmer, I.W., Glossop, N.H. (1980), “Mechanics of disc cutter penetration”, Tunnels and Tunnelling International, Vol. 12, No. 6, pp. 22-25.

6.

6. Graham, P.C. (1976), Rock exploration for machine manufacturers. In: Bieniawski, Z.T. (Ed.), Exploration for Rock Engineering. Balkema, Johannesburg, pp. 173-180.

7.

7. Hamidi, J.K., Shahriar, K., Rezai, B., Rostami, J. (2010), “Performance prediction of hard rock TBM using rock mass rating (RMR) system” Tunnelling and Underground Space Technology, Vol. 25, No. 4, pp. 333-345.

8.

8. Han, J.G., Kim, J.S., Lee, Y.K., Hong, K.K. (2011), “Comparison of empirical model for penetration rate prediction using case history of TBM construction”, Journal of the Korean Geosynthetics Society, Vol. 10, No. 4, pp. 61-70.

9.

9. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. (2009), “Developing new equations for performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel”, Geomechanics and Geoengineering, Vol. 4, No. 4, pp. 287-297.

10.

10. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., Tavakoli, H.R. (2010) “TBM performance analysis in pyroclastic rocks: A case history of Karaj water conveyance tunnel”, Rock Mechanics and Rock Engineering, Vol. 43, No. 4, pp. 427-445.

11.

11. Hughes, H.M. (1986), “The relative cuttability of coal-measures stone”, Mining Science and Technology, Vol. 3, No. 2, pp. 95-109.

12.

12. Jung, H.S., Kang, H.N., Choi, J.M., Chun, B.S. (2010), “Improvement plan of excavation performance based on shield TBM performance prediction models and field data”, Journal of the Korean Geoenvironmental Society, Vol. 11, No. 2, pp. 43-52.

13.

13. Ramezanzadeh, A., Rostami, J., Kastner, R. (2005), Influence of rock mass properties on performance of hard rock TBMs, RETC, June 27-29, Seattle, Washington, USA.

14.

14. Ribacchi, R., Lembo-Fazio, A. (2005), “Influence of rock mass parameters on the performance of a TBM in a Gneissic formation (Varzo tunnel)”, Rock Mechanics and Rock Engineering, Vol. 38, No. 2, pp. 105-127.

15.

15. Tarkoy, P.J. (1986), Practical geotechnical and engineering properties for tunnel-boring machine performance analysis and prediction, Transportation Research Record 1087, Washington, D.C. pp. 62-78.

16.

16. Tarkoy, P.J. (1973), “Predicting TBM penetration rates in selected rock types”, Proceedings of the 9th Canadian Rock Mechanics Symposium, Montreal, pp. 263-274.

(사)한국터널지하공간학회