바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Derivation and verification of electrical resistivity theory for surrounding ground condition prediction of TBM

(사)한국터널지하공간학회 / (사)한국터널지하공간학회, (P)2233-8292; (E)2287-4747
2020, v.22 no.1, pp.135-144



  • Downloaded
  • Viewed

Abstract

Since the depth of tunneling with tunnel boring machine (TBM) becomes deeper and deeper, the expense for site investigation for coring and geophysical survey increases to obtain the sufficient accuracy. The tunnel ahead prediction methods have been introduced to overcome this limitation in the stage of site investigation. Probe drilling can obtain the core and borehole images from a borehole. However, the space in TBM for the probe drilling equipment is restricted and the core from probe drilling cannot reflect the whole tunnel face. Seismic methods such as tunnel seismic prediction (TSP) can forecast over 100 m ahead from the tunnel face though the signal is usually generated using the explosive which can affect the stability of segments and backfill grout. Electromagnetic methods such as tunnel electrical resistivity prospecting system (TEPS) offer the exact prediction for a conductive zone such as water-bearing zone. However, the number of electrodes installed for exploration is limited in small diameter TBM and finally the reduction of prediction ranges. In this study, the theoretical equations for the electrical resistivity survey whose electrodes are installed in the face and side of TBM to minimize the installed electrodes on face. The experimental tests were conducted to verify the derived equations.

keywords
TBM, Electrical resistivity survey, Side electrode, TBM, 전기비저항탐사, 측면전극

(사)한국터널지하공간학회