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Introduction

Neofinetia falcata (Thunb.) Hu is an epiphytic orchid 
that grows on tree trunks or rocks and is distributed in 
Korea, Japan, and China (Dressler, 1993; Chen and Jef-
frey, 2009; Lee, 2011). This beautiful orchid contains a 
pleasant fragrance and is a symbol of wealth and nobil-
ity, which is why Japan began cultivating it in the 17th 
century (Yoon and Chung, 2011; Duttke et al., 2012). Due 
to the popularity, it has been collected extensively and 
is now threatened with extinction. N. falcata is known 
to be found at about 20 sites in Jeju-do and along the 
southern coast of the Korean Peninsula (Shin et al., 2009; 
National Institute of Biological Resources, 2012). Cur-
rently, this species has been classified as Critically En-
dangered (CR) on the IUCN Red List (National Institute 
of Biological Resources, 2012) and protected by law 
through the Ministry of Environment in Korea.

Endangered or rare plants, including orchids, have 
undergone habitat loss, over-collection, and fragmenta-

tion (Segelbacher et al., 2003; Michael, 2016). In par-
ticular, wild orchids are declining in numbers as a result 
of over-collection, habitat destruction due to human 
activities, and impact of climate change (Barman and 
Devadas, 2013; Michael, 2016; Tian et al., 2018; Xu et 
al., 2018). These factors induce genetic erosion from ge-
netic drift, inbreeding, decrease in populations size, and 
reduced gene flow within small and isolated populations 

(Murren, 2002; David and Richard, 2003; Honnay and 
Jacquemyn, 2007; Hundera et al., 2013; Su et al., 2017). 
Genetic variability in small populations is vulnerable to 
environmental changes due to inbreeding, isolation, and 
bottleneck events, and this reduces the potential of small 
populations to respond to selective pressures (Spencer 
et al., 2000; Su et al., 2017). Appropriate conservation 
measures are needed of endangered to maintain genetic 
diversity. For population genetics research, it is import-
ant to understand the level of population differentiation 
in order to properly conserve endangered or rare plants. 

Microsatellites are codominant molecular markers that 
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show a high level of polymorphism and contain repeat 
motifs of 1-6 nucleotides (Yun et al., 2011). They have 
been effectively utilized as a tool for genetic assessment 
of endangered or rare plants for conservation (Spencer 
et al., 2000; Escudero et al., 2003; Sun et al., 2011). Re-
cently, the genetics of a wide range of endangered or rare 
plants were evaluated using microsatellite markers (Hou 
et al., 2012; Lavor et al., 2014; Miao et al., 2015; Kwak 
et al., 2017; Su et al., 2017).

N. falcata studies have primarily focused on the cul-
ture of seeds or cells for horticultural value (Chung, 
1980; 1981; Ichihashi and Islam, 1999; Hahn and Paek, 
2001; Mitsukuri et al., 2009; Han et al., 2010; 2013). As 
basic information for conservation, N. falcata is an ane-
mochorous plant that is pollinated by the long-tongued 
hawkmoth (genus Theretra) (Kiyohara et al., 2012; Shi-
mizu, 2012; Suetsugu et al., 2015). The phylogeny of 
Neofinetia and related genera has been extensively stud-
ied, but there is a lack of research towards genetic diver-
sity using microsatellites (Duttke et al., 2012; Hidayat et 
al., 2012; Kim et al., 2014).

Understanding of genetic variation and population dif-
ferentiation of N. falcata is essential for its conservation 
and restoration. However, the population genetic infor-

mation of wild this species have not been studied. For 
this reason, we used next-generation sequencing (NGS) 
to develop microsatellites markers of N. falcata. We use 
these microsatellite markers to study the genetic struc-
ture, population differentiation, and gene flow between 
natural populations. These data provide baseline genetic 
information for conservation and management of this 
endangered species. 

Materials and Methods

Plant materials and DNA extraction

N. falcata is difficult to collect because it commonly 
grows on steep cliffs and the number of natural popula-
tions is small. We chose sampling sites based on inter-
views with the national park official. Forty individuals 
of N. falcata were collected from Boksaeng Island (BS, 
n = 11), Geomun Island (GM, n = 6) and Galgot Island 

(GG, n = 23), located in the South Sea of Korea (Table 
1; Fig 1). The leaves were dried on either silica gel or 
frozen in liquid nitrogen. Genomic DNA was extracted 
from the flesh of the leaves using the Wizard Genomic 
DNA Purification Kit (Promega, USA). The quality and 

Table 1. Sample collection sites for populations.

Population code No. individuals Location

BS 11 Boksaeng Island, Wando-gun, Jeollanam-do Prov.
GM 6 Geomun Island, Wando-gun, Jeollanam-do Prov.
GG 23 Galgot Island, Geoje-si, Gyeongsangnam-do Prov.

Fig. 1. Geographic distribution of N. falcata populations. Abbreviations are shown in Table 1. Pie charts represent assignment probability of 
belonging to each K = 2 clusters identified by STRUCTURE based on microsatellite allele frequencies, with probability values normalized 
using CLUMPP.
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concentration of DNA were assessed using 0.7% aga-
rose gel electrophoresis and a spectrophotometer (Nano-
drop, USA). DNA was stored at 4°C until used for later 
laboratory work. 

Development of the microsatellite makers

DNA from one individual was used for NGS sequenc-
ing to screen for microsatellite fragments. Approximate-
ly 10 μg of genomic DNA was sequencing using the 
Roche 454 GS-FLX Titanium platform (454 Life Scienc-
es, Branford, CT, USA) at the National Instrumentation 
Center for Environmental Management of Seoul Nation-
al University (NICEM). The sequence reads were assem-
bled using the Newbler software package (Roche Diag-
nostics, 454 Life Science). The sequences were scanned 
for di- and trinucleotide repeats using the “SSR_finder.
pl” Perl program for the development of microsatellites 

(Shanker et al., 2007). The repeats were sorted accord-
ing to the number of iterations, and primer pairs flanking 
each repeat were designed using Primer 3 to amplify 
fragments containing repeats of more than four itera-
tions (Rozen and Skaletsky, 2000). The optimal primer 
size was set at 22 bp (range 18-26 bp), the optimal an-
nealing temperature was set at 58°C (range 55-59°C), 
and the product size was selected to be 130-270 bp, with 
the remaining parameters left at the default settings. 

PCR and microsatellite genotyping 

Forty-eight designed primer pairs were tested for am-
plification using polymerase chain reaction (PCR) on 
two individuals. PCR was performed in a total volume 
of 20 μL containing 10-15 ng of DNA from 40 individu-
als of the three populations and 0.2 μM of both forward 
and reverse primer using AccuPower PCR Premix (Bi-
oneer, USA). Conditions included initial denaturation at 
94°C for 5 min; then 35 cycles at 94°C for 1 min, 58°C 
for 1 min, 72°C for 2 min; with a final extension at 72°C 
for 7 min. The amplified fragments and their sizes were 
visualized using QIAxcel (Qiagen) with the QIAxcel 
DNA Screening Kit (Qiagen). PCR amplifications of mi-
crosatellite loci were conducted in a final volume of 6 
μL containing 1X QIAGEN Multiplex PCR Master Mix 

(QIAGEN, Germany), approximately 10 ng of template 
DNA, and 0.2 μM for both the reverse primer and la-
belled primer fluorescent (6-FAM, NED, PET and VIC). 
The PCR reaction was amplified using the following 
conditions: 5 min pre-denaturation at 95°C, followed by 
35 cycles of 30 s at 94°C, 90 s at 57°C, and 72 s at 
60°C, and a final extension at 60°C for 30 min. The am-
plified DNA fragments were analyzed using an ABI 
3730XL (Applied Biosystems, USA), and genotypes 
were determined using the GeneMaker program ver. 
1.85 (Softgenetics LLC).

Data analysis

The number of alleles (A), observed heterozygosity 

(Ho), and expected hetrozygosity (He) for each locus 
were calculated using ARLEQUIN ver. 3.5.1.2 (Excof-
fier and Lischer, 2010). Deviations from Hardy-Wein-
berg equilibrium (HWE) were tested using ARLEQUIN. 
Measures of the mean number of alleles per locus (Na), 
number of effective alleles per locus (Ne), Shannon’s 
information index (I), and inbreeding coefficient (Fis) 
were performed with GenAlEx ver. 6.503 (Peakall and 
Smouse, 2012). Allelic richness (Rs) and the number of 
private alleles (Ps) for a standard sample size were calcu-
lated using a rarefaction approach in ADZE (Szpiech et 
al., 2008). The possible loss of genetic variation through 
the bottleneck effect was tested using the BOTTLE-
NECK ver. 1.2.02 (Piry et al., 1999). The Wilcoxon test 
was used to test the significance of heterozygote excess 
under the infinite allele model (IAM), the stepwise mu-
tation (SMM), and two-phased models (TPM), as recom-
mended by Piry et al. (1999). Population genetic struc-
ture was investigated using the STRUCTURE ver. 2.3.4 

(Pritchard et al., 2000). The assumed K number of pop-
ulations ranged from 1 to 20. Each run was performed 
using the admixture model and the burn-in period was 
set to 100,000 followed by 1,000,000 Markov chain 
Monte Carlo (MCMC) replicates, with 10 iterations per 
K to confirm stabilization of the summary statistics. The 
most appropriate K was determined by calculating △K 
following steps set forward by Evanno et al. (2005). 
All △K calculations were performed using the program 
STRUCTURE HARVESTER ver. 6.0 (Earl and von-
Holdt, 2012). We combined the data of the interactions 
in the best K with the CLUMPP (Jakobsson and Rosen-
berg, 2007), then plotted the results using DISTRUCT 

(Rosenberg, 2004). Population differentiation was as-
sessed by hierarchical analysis of molecular variance 

(AMOVA) using ARLEQUIN ver. 3.5.1.2. 

Results  
Isolation and characterization of microsatellite loci

From the NGS, we obtained 93 Mbp of sequence data 

(238,561 reads). The total number of contigs was 3,964 
and number of singletons was 162,430. Di- and trinucle-
otide repeats were identified in 36,915 regions (dinucle-
otide repeats: 5,018; trinucleotide repeats: 1,928). The 
greatest number repeat motifs were 15 iterations of AT, 
CA, CT among dinucleotide repeats and 18 iterations of 
ATA among trinucleotide repeats.

Initial screening of the 48 primer pairs with two in-
dividuals resulted in 27 successfully amplified primer 
pairs. The 27 microsatellite primers were then evaluat-
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ed using all 40 individuals. Nine primer pairs yielded 
consistent and scorable genotypes (Table 2). In the BS 
population, the number of alleles (A) was two, and the 
observed heterozygosity (Ho) and expected heterozygos-
ity (He) ranged from 0.18 to 0.36 and 0.31 to 0.51 (Ta-
ble 3). In the GM population, the number of alleles (A) 

varied from 2 to 3, and the observed heterozygosity (Ho) 
and expected heterozygosity (He) ranged from 0.00 to 
0.33 and 0.30 to 0.48. In the GG population, the number 
of alleles (A) ranged from two to five, and the observed 
heterozygosity (Ho) and expected heterozygosity (He) 
ranged from 0.04 to 0.48 and 0.04 to 0.70. One GM lo-

Table 2. Characteristics of 9 microsatellite loci developed in N. falcata.

Locus Primer sequences (5’-3’) Repeat motif Fluorescent 
dye

Allele size
range (bp)

NF1 F: GATGAATGGCCCTAAAACAATA
R: TTTCTTTTATTTGTGTGTATGTTGAATCT (AAT)11 6-FAM 202-205

NF2 F: CCAACGCCTAACAAAATCAAG 
R: GAAGACTTGGGCTTATTGTATTA (ACA)15 6-FAM 286-300

NF3 F: AAATAAGTCTGTATCCCACTAAGA
R: ATTGATTTGTTTTTGTATGGATTTT (TTG)10 NED 251-260

NF4 F: CTTAAATCAGAAGACTAACCATTAATTC
R: GGTTTTCTTTTAAGGTTTTTGGA (AAT)12 NED 190-196

NF5 F: GCCGATATGTGATGCTTTAGTT
R: CCTTGACTCACATACCC (ATA)11 6-FAM 169-172

NF6 F: CGTTTCACCTATTTAACCGAAG
R: ACATCATTCTAGCTAAACAACATC (ATT)11 NED 190-196

NF7 F: TTACACGAATCACAAATCCAGA
R: CTAAAACTTCTCCATTGTTCTTC (ATA)12 PET 151-169

NF8 F: TTATTAGACCAGGACATGGAGG
R: CCCTTGAGCCTCCTTTAAT (TTA)11 PET 186-217

NF9 F: CAGATTTACAGGATTTGATAAATACG
R: GACATGCACATCTTGATCACTC (TG)12 NED 182-193

Table 3. Genetic diversity values for 40 individuals of N. falcata across 9 microsatellite loci.

Locus
BS (N = 11) GM (N = 6) GG (N = 23)

A Ho He A Ho He A Ho He

NF1 1 - - 1 - - 2 0.30 0.51
NF2 2 0.27 0.51 1 - - 3 0.26 0.59*
NF3 1 - - 2 0.00 0.30 2 0.09 0.09
NF4 2 0.27 0.37 2 0.00 0.48* 3 0.35 0.48*
NF5 1 - - 1 - - 2 0.04 0.04
NF6 2 0.18 0.48 1 - - 3 0.17 0.54*
NF7 1 - - 1 - - 2 0.48 0.41
NF8 2 0.36 0.31 3 0.33 0.32 5 0.26 0.70*
NF9 1 - - 1 - - 2 0.35 0.49

Average 1.44 0.27 0.42 1.44 0.11 0.37 2.67 0.26 0.43

A = number of alleles; Ho = observed heterozygosity; He = expected heterozygosity; N = number of individual sampled. 
*Significant deviation from HWE after correction for multiple tests (P<0.005). 
-  Monomorphic

Table 4. Genetic diversity indices of three populations based on 9 microsatellite loci.

Population N Na Ne I Ho He Fis Rs Ps

BS 11 1.444 1.307 0.260 0.121 0.177 0.261 1.408 0.160
GM 6 1.444 1.177 0.184 0.037 0.113 0.619 1.316 0.219
GG 23 2.667 1.921 0.680 0.256 0.419 0.279 2.396 0.828

Total 40 1.852 1.469 0.375 0.138 0.236 0.338 1.707 0.402

N = number of individuals; Na = mean number of alleles per locus; Ne = number of effective alleles per locus; I = Shannon’s information 
index; Ho = observed heterozygosity; He = expected heterozygosity; Fis = inbreeding coefficient; Rs = Allelic richness; Ps = number of 
private alleles
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cus (NF4) and four GG loci (NF2, NF4, NF6, NF8) de-
viated from the Hardy-Weinberg equilibrium (HWE).

Genetic diversity 
The values for genetic diversity for the 40 individuals 

of N. falcata are in Table 4. The mean number of alleles 

(Na) and number of effective alleles (Ne) were 1.852 

(1.444-2.667) and 1.469 (1.177-1.921), respectively. Ob-
served heterozygosity (Ho) among all populations was 
0.138 (0.037-0.256) and the average expected heterozy-
gosity (He) was 0.236 (0.113-0.419). Inbreeding coeffi-
cients (Fis) ranged from 0.279 to 0.619 and were signifi-
cantly negative for GM population. The allelic richness 

(Rs) and the number of private alleles (Ps) ranged from 
0.316 to 2.396 and 0.160 to 0.828, respectively.

Genetic structure

AMOVA results showed substantial genetic variation 
in the sampled populations, with 26.84% of the total 
variation explained by differences among populations 
and 73.16% by differences within populations (Table 5). 
STRUCTURE analyses provided complementary meth-
ods for visualizing patterns of genetic similarity and 
differentiation among populations (Fig. 2). According to 
the Evanno method in STRUCTURE HARVESTER, the 
highest peak was detected at K = 2, followed by peaks 
at K = 3. For K = 2, the first group consisted of 61% of 
the GG population (red), while the second group con-
sisted of the the remaining population (BS, GM, 39% of 
GG) (green). These two genetic clusters from the Jeol-
lanam-do population (BS, GM) were separated from the 
Gyeongsangnam-do population (GG) at K = 3. 

Genetic bottlenecks

Bottleneck analysis showed that two populations (GM, 
GG) did not experience a recent bottleneck event (Ta-
ble 6). The GM and GG populations exhibited normal 
L-shaped allele frequency distributions. However, the BS 
population displayed evidence of a population bottle-
neck under IAM, TPM, and SMM, inferring this popula-
tion has experienced a recent bottleneck event.

Discussion

We have developed a set of 9 polymorphic microsatel-

lite markers for N. falcata. The nine microsatellite mark-
ers were useful for assessing genetic diversity and pop-
ulation structure for conservation. N. falcata has main-
tained a low level of genetic diversity as compared to 
other orchids that have been studied using microsatellite 
makers. The microsatellite heterozygosiy of N. falcata 

(mean He = 0.236) was lower than the endangered or ep-
iphytic orchids of Encyclia tampensis (mean He = 0.281; 
Weremijewicz et al., 2016), Cyrtopodium punctatum 

(mean He = 0.272; Weremijewicz et al., 2016), Gastrodia 
elata (mean He = 0.468; Chen et al., 2014), Dendrobium 
calamiforme (mean He = 0.591; Trapnell et al., 2015), 
and Jumellea rossii (mean He = 0.750; Mallet et al., 
2014). Allelic richness of N. falcata (mean Rs = 1.707) 

Fig. 2. Structure analyses for putative genetic clusters of N. falcata. 
A: Graphs of ΔK values to determine the ideal number of groups 
present in the accessions of N. falcata. B: Estimated genetic struc-
ture of the 3 populations of brinjal based on STRUCTURE analy-
sis K = 2 and K = 3.
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Table 5. AMOVA results showing the partitioning of genetic diversity among the three populations of N. falcata.

Source d.f. Sum of squares Variance components Percentage of variation

Among populations 2 26.885 0.5256 Va 26.84
Within populations 77 110.303 1.4325 Vb 73.16

Total 79 137.188 1.9581
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was also lower than J. rossii (mean Rs = 7.98; Mallet et 
al., 2014). The low levels of genetic diversity among N. 
falcata populations could be caused by inbreeding or 
fragmentation into small and isolated populations (Miao 
et al., 2014; 2015; Su et al., 2017).

Of the three N. falcata populations used in this study, 
GG exhibited high level of genetic and allelic diversi-
ty compared to the other two populations. The higher 
diversity of this population is likely influenced by the 
larger sample size (23 compared to 11 or 6 individuals). 
Genetic and allelic diversity of GM was lower than the 
other populations. The inbreeding coefficient (Fis) of GM 
was twice as high as the other two populations. As men-
tioned above, the low genetic and allelic diversity were 
affected by population size, gene flow, genetic drift, and 
inbreeding (Ellstrand and Elam, 1993; Frankham, 1996; 
Leimu et al., 2006). Our analysis suggests that BS was 
affected by a bottleneck (Table 6). The number of private 
alleles of BS was lower than the other two populations. 
Population that have experienced a recent bottleneck 
exhibit a larger decrease in number of alleles relative to 
the genetic diversity (Cornuet and Luikart, 1996). We 
hypothesize that BS has suffered from bottleneck due to 
unexpected exploitation. 

The environment related to pollen and seed disper-
sal has significant impact on genetic diversity in plants 

(Murren, 2002; Muyegi et al., 2015; Tian et al., 2018). 
Theretra spp., long-tongued hawk moth, is known as 
potential pollinator of N. falcata (Suetsugu et al., 2015). 
The hawk moth can fly distances greater than 20 km 

(Wone et al., 2018). The dust-like seeds of orchids are 
dispersed long-distance by wind or water (Kiyohara et 
al., 2012; Shimizu, 2012; Tian et al., 2018). Neverthe-
less, recent studies demonstrated that seeds are trans-
ported  short distances, remaining in the vicinity of the 
mother orchid, with rare long-distances dispersal (Mallet 
et al., 2014; Tian et al., 2018). The populations of N. fal-
cata in this study are separated by approximately 70-100 
km, and exhibit limited the pollen and seed dispersal. 
The restricted pollen and seed dispersal across isolated 
populations would cause low gene flow, decreasing the 
genetic diversity among population.

The genetic variation among N. falcata among pop-
ulations was moderate (26.84%). This genetic varia-
tion among populations infers that long-distances gene 
flow occasionally occurs. The level of genetic variation 
among populations was correlated with geographic dis-
tance due to limited gene flow by pollen or seeds (Muyegi 
et al., 2015). Also, genetic structure is determined by gene 
flow and topoclimate with long-term stability (Zhang et 
al., 2017). Our analysis of genetic structure showed that 
the three populations could be separated in two genetic 
groups, according to geographic location.

N. falcata is threatened with extinction due to excel-
lent horticultural value and habitat destruction by human 
activity. The low genetic and allelic diversity, along with 
the inference of a recent bottleneck, weakens the resil-
ience of this species to environmental change, such as 
habitat destruction and climate change.

Thus, in situ and ex situ conservation efforts are nec-
essary for this species. In situ conservation should be 
implemented to reduce the further loss of genetic diver-
sity and preserve the current genetic structure. Ex situ 
conservation should also be considered given that using 
seeds at ex situ sites is a good strategy for conservation 
purposes (Johansen and Rasmussen, 1992). Seed stor-
age will be essential to recover the extinction popula-
tions.  
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