바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

온라인 쇼핑몰 데이터를 활용한 판매동향 분석 시스템

Open Market Sales Trend Analysis System Using Online Shopping Mall Data

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2019, v.5 no.2, pp.7-12
https://doi.org/https://doi.org/10.20465/kiots.2019.5.2.007
차승연 (목포대학교)
김강렬 (목포대학교)
러비나스레스터 (목포대학교)
김영주 (목포대하교)
최종명 (목포대학교)
  • 다운로드 수
  • 조회수

초록

인터넷의 발전으로 온라인 쇼핑이 활성화 되면서 소비자들의 구매 형태가 기존의 대면 구매방식에서 온라인 구매방식으로 변하고 있다. 이에 수많은 판매자가 쇼핑몰로 유입되었고, 판매자들 간의 경쟁이 매우 치열한 실정이다. 따라서 쇼핑몰 내 판매자들은 소비자의 구매 패턴 및 제품 판매동향을 분석하여 합리적인 마케팅 전략을 세울 필요가 있다. 본 논문에서는 오픈 쇼핑몰에서 판매업자가 동일 제품을 판매하는 경쟁사의 제품 가격, 평점, 판매수량을 시간대별로 분석하여 소비자의 구매 패턴을 파악했다. 또한 수집된 정보들을 차트로 가시화하여 자사와 경쟁사의 판매동향을 쉽게 비교할 수 있도록 하였다. 위 시스템을 사용하면 분석된 구매패턴을 통해 판매수량을 예측할 수 있고 판매동향을 파악하여 상품의 합리적인 가격 선정이 가능하다.

keywords
빅 데이터, 온라인 쇼핑, 마케팅 전략, 판매 동향, Big Data, Online Shopping, Marketing Strategy, Sales Trend

Abstract

인터넷의 발전으로 온라인 쇼핑이 활성화 되면서 소비자들의 구매 형태가 기존의 대면 구매방식에서 온라인구매방식으로 변하고 있다. 이에 수많은 판매자가 쇼핑몰로 유입되었고, 판매자들 간의 경쟁이 매우 치열한 실정이다. 따라서 쇼핑몰 내 판매자들은 소비자의 구매 패턴 및 제품 판매동향을 분석하여 합리적인 마케팅 전략을 세울 필요가있다. 본 논문에서는 오픈 쇼핑몰에서 판매업자가 동일 제품을 판매하는 경쟁사의 제품 가격, 평점, 판매수량을 시간대별로 분석하여 소비자의 구매 패턴을 파악했다. 또한 수집된 정보들을 차트로 가시화하여 자사와 경쟁사의 판매동향을쉽게 비교할 수 있도록 하였다. 위 시스템을 사용하면 분석된 구매패턴을 통해 판매수량을 예측할 수 있고 판매동향을파악하여 상품의 합리적인 가격 선정이 가능하다.

keywords
빅 데이터, 온라인 쇼핑, 마케팅 전략, 판매 동향, Big Data, Online Shopping, Marketing Strategy, Sales Trend

참고문헌

1.

H.Y.Kim, “Current Status and Implications of Direct Commercial Trading in Private Social Commerce and Open Market”, Agro-Fisheries & Food Trade Corp., Suwon, KR, Tech. Rep. In-depth-2017-000, 2017.

2.

M.R.Kim and S.S.Kim, "Continuous Purchase Intention through Online Open Market Platform: Multidimensional Approach of Perceived Value in Purchasing Process and Transaction Satisfaction", The Journal of Internet Electronic Commerce Research, Vol.19, No.3, pp.149-172, 2019.

3.

H.Y.Lee, K.R.Park and D.H.Kim, "A Study on Possible Construction of Big Data Analysis System Applied to the Offline Market", The Journal of Digital Convergence, Vol.14, No.9, pp.317-323, 2016.

4.

S.H.Park, J.D.Jun, "Estimation and Forecasting of Dynamic Effects of Price Increase on Sales Using Panel Data", The Journal of Korean Operations Research and Management Science Society, Vol.31, No.2, pp.157-167, 2006.

5.

H.J.Lee and Y.L.Hong, "A Study on the Adaptation of Brand Colors on the Domestic Smartphone Open Market Apps Focusing on the 11st Street, G-Market, Auction", A Journal of Brand Design Association of Korea, Vol.13, No.2, pp.249-262, 2015.

6.

K.S.Chae, B.Y.Kim and S.H.Min, “Analysis of Field Crop Consumers Using SNS Big Data”, KREI, Naju, KR, Rec. Rep. R834-2, Dec. 2017.

7.

S.H.Chae, J.I.Lim and J.Y.Kang, "A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce", The Journal of Intelligence and Information Systems, Vol.21, No.4, pp.53-77, 2015.

8.

Statistics, https://en.wikipedia.org/wiki/Statistics

9.

Google Chart, https://en.wikipedia.org/wiki/Statistics

10.

H.C.Ko, M.S.Kim, S.B.Lee and H.W.Lee, "Django based ChatBot System Using KakaoTalk API", KOITS, Vol.4, No.1, pp.31-36, 2018.

한국사물인터넷학회논문지