바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

생물학적 정보를 활용한 병원에서 존재하는 공기중 부유 세균에 대한 이산화염소의 유용성

Usefulness of Chlorine Dioxide to Airborne Bacteria at a Hospital Using Biological Information

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2020, v.6 no.2, pp.19-24
https://doi.org/https://doi.org/10.20465/kiots.2020.6.2.019
정석률 (남서울대학교)
  • 다운로드 수
  • 조회수

초록

본 연구에서, 세균의 생물학적 정보와 이산화염소 가스의 생화학적 정보들을 활용하여, 그람 양성 세균인 Alloiococcus otitis, Erysipelothrix rhusiopathiae, Staphylococcus caprae, Staphylococcus lentus 및 그람 음성 세균인 Acinetobacter baumannii complex, Aeromonas salmonicida, Brucella melitensis, Oligella ureolytica에 대한 이산화염소가스의 성장 억제 효과를 분석하였다. 전체적으로, 이산화염소 가스는 10 CFU 미만으로 세균의 성장을 약 99 % 억제하였다. 하지만, 그람 양성인 Alloiococcus otitis 및 그람 음성인 Aeromonas salmonicida는 약 50 CFU 이상인 것으로 밝혀졌다. 여러 세균과의 실험 결과를 비교할 때, 이산화염소 가스의 농도는 세균 억제에 대해 10 ppm 내지 400 ppm 일 것이라고 제안한다. 이 연구의 결과는 이산화염소 가스의 임상적 유용성을 평가하기 위한 기본 데이터로 사용될 수 있을 것이다. 이 연구가 임상에 있는 근무자가 병원에서 감염을 일으키는 미생물의 존재를 인식하고 예방하는 사전 지식에 도움이 되는 경우, 융합분야 중, 임상에서처럼 환자 치료와 같은 활동에 도움이 될 것이다. 향후에, 이산화염소 가스에 대해 억제되는 미생물들의 정보의 데이터를 활용하여, 환자에게 감염된 미생물들을 신속히 억제하는데 기초가되는 연구결과가 될 것으로 사료된다.

keywords
Bacteria, Chlorine dioxide, Biological information, Biochemical information, Data, 세균, 이산화염소, 생물학적 정보, 생화학적 정보, 데이터

Abstract

In the present study, using biological information of bacteria and biochemical information of chlorine dioxide gas, Gram-positive bacteria, e.g., Alloiococcus otitis, Erysipelothrix rhusiopathiae, Staphylococcus caprae, Staphylococcus lentus, and gram-negative bacteria, e.g., Acinetobacter baumannii complex, Aeromonas salmonicida, Brucella melitensis, Oligella ureolytica were used whether a plastic kit to release ClO2 gas could inhibit their growth. Overall, chlorine dioxide gas showed about 99% inhibition of bacterial growth, with less than 10 CFU. However, it was found that Gram positive Alloiococcus otitis and Gram negative Aeromonas salmonicida had more than about 50 CFU. When comparing the results of experiments with several bacteria, it suggested that the concentration of chlorine dioxide gas would be at least 10 ppm to 400 ppm for the bacterial inhibition. The results of this study could be used as basic data to evaluate the clinical usefulness of chlorine dioxide gas. If this study helps with prior knowledge to help clinicians to recognize and prevent the presence of micro-organisms that cause infections in hospitals, it would be helpful for activities such as patient care as a convergence field. In the future, it is considered that the research results will be the basis for rapidly inhibiting the microbes infected with patients by utilizing data of the information of the microbes that are inhibited for chlorine dioxide gas.

keywords
Bacteria, Chlorine dioxide, Biological information, Biochemical information, Data, 세균, 이산화염소, 생물학적 정보, 생화학적 정보, 데이터

참고문헌

1.

H.Chung, H.Kim, D.Myeong, S.Kim and N.H.Choe, “Effect of chlorine dioxide gas application to egg surface: microbial reduction effect, quality of eggs, and hatchability”, Korean J. Food Sci. Anim. Resour., Vol.38, No.3, pp.487-497, 2018.

2.

M.Y.Fukayama, H.Tan, W.B.Wheeler and C.I.Wei, “Reactions of aqueous chlorine and chlorine dioxide with model food compounds”, Environ. Health Perspect., Vol.69, pp.267-274, 1986.

3.

H.Kim, B.Yum, S.S.Yoon, K.J.Song, J.R.Kim,D. Myeong, B.Chang and N.H.Choe, “Inactivation of Salmonella on eggshells by chlorine dioxide gas”, Korean J. Food Sci. An., Vol.36, No.1, pp.100-108, 2016.

4.

J.J.Lowe, S.G.Gibbs, P.C.Iwen, P.W.Smith and A.L.Hewlett, “Decontamination of a hospital room using gaseous chlorine dioxide: Bacillus anthracis, Francisella tularensis, and Yersinia pestis ”, J. Occup. Environ. Hyg., Vol.10, No.10, pp.533-539, 2013.

5.

H.Morino, T.Fukuda, T.Miura, C.Lee, T.Shibata and T.Sanekata, “Inactivation of feline calicivirus, a norovirus surrogate, by chlorine dioxide gas”, Biocontrol Sci., Vol.14, No.4, pp.147-153, 2009.

6.

K.V.Sy, K.H.McWatters and L.R.Beuchat, “Efficacy of gaseous chlorine dioxide as a sanitizer for killing Salmonella , yeasts, and molds on blueberries, strawberries, and raspberries”, J. Food Prot., Vol.68, No.6, pp.1165-1175, 2005.

7.

V.M.Gmez-Lpez, A.Rajkovic, P.Ragaert, N.Smigic and F.Devlieghere, “Chlorine dioxide for minimally processed produce preservation: a review”, Trends Food Sci. Technol., Vol.20, No.1, pp.17-26, 2009.

8.

N.Ogata, T.Shibata, “Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection”, J. Gen. Virol., Vol.89, No.1, pp.60-67, 2008.

9.

S.P.Meneghin, F.C.Reis, P.G.de Almeida and S.R.Ceccato-Antonini, “Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation”, Braz. J. Microbiol., Vol.39, No.2, pp.337-343, 2008.

10.

N.Ogata, M.Sakasegawa, T.Miura, T.Shibata, Y.Takigawa, K.Taura, K.Taguchi, K.Matsubara, K.Nakahara, D.Kato, K.Sogawa and H.Oka, “Inactivation of airborne bacteria and viruses using extremely low concentrations of chlorine dioxide gas”, Pharmacol., Vol.97, No.5-6, pp.301-306, 2016.

11.

F.Xu, S.Wang, J.Xu, S.Liu and G.Li, “Effects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries”, Postharvest. Biol. Technol., Vol.117, pp.125-131, 2016.

12.

H.G.Kim, K.B.Song, “Combined treatment with low concentrations of aqueous and gaseous chlorine dioxide inactivates Escherichia coli O157:H7 and Salmonella typhimurium inoculated on paprika”, J. Microbiol. Biotechnol., Vol.27, No.3, pp.492-499, 2017.

13.

A.Harimaya, R.Takada, P.H.Hendolin, N.Fujii, J.Ylikoski and T.Himi, “High incidence of Alloiococcus otitidis in children with otitis media, despite treatment with antibiotics”, J. Clin. Microbiol., Vol.44, No.3, pp.946-949, 2006.

14.

H.Faden, D.Dryja, “Recovery of a unique bacterial organism in human middle ear fluid and its possible role in chronic otitis media”, J. Clin. Microbiol., Vol.27, No.11, pp.2488-2491, 1989.

15.

A.V.Gravenitz, “Revised nomenclature of Alloiococcus otitis ”, J. Clin. Microbiol., Vol.31, No.2, pp.472, 1993.

16.

S.Veraldi, V.Girgenti, F.Dassoni and R.Gianotti, "Erysipeloid: a review", J. Clin. Exp. Dermatol., Vol.34, No.8, pp.859-862, 2009.

17.

J.d'Ersu, G.G.Aubin, P.Mercier, P.Nicollet, P.Bmer and S.Corvec, “Characterization of Staphylococcus caprae clinical isolates inVolved in human bone and joint infections, compared with goat mastitis isolates”, Clin. Vet. Microbiol., Vol.54, No.1, pp.106-113, 2016.

18.

S.Stepanovi, I.Daki, A.Martel, M.Vaneechoutte, D.Morrison, A.Shittu, P.Jeek, A.Decostere, L.A.Devriese and F.Haesebrouck, “A comparative evaluation of phenotypic and molecular methods in the identification of members of the Staphylococcus sciuri group", System. Appl. Microbiol., Vol.28, No.4, pp.353-357, 2005.

19.

M.F.Lin, C.Y.Lan, “Antimicrobial Resistance in Acinetobacter baumannii : From Bench to Bedside", World J. Clin. Cases, Vol.2, No.12, pp.787-814, 2014.

20.

S.Menanteau-Ledouble, G.Kumar, M.Saleh and M.El-Matbouli, “Aeromonas salmonicida : updates on an old acquaintance”, Dis. Aquat. Oragn, Vol.120, No.1, pp.49-68, 2016.

21.

S.V.Pisarenko, D.A.Kovalev, A.S.Volynkina, D.G.Ponomarenko, D.V.Rusanova, N.V.Zharinova, A.A.Khachaturova, L.E.Tokareva, I.G.Khvoynova and A.N.Kulichenko, “Global eVolution and phylogeography of Brucella melitensis strains”, BMC Genomics, Vol.19, No.1, pp.353, 2018.

22.

A.Pagotto, S.Merluzzi, P.Pillinini and M.Valeri, “Bloodstream infection with Oligella ureolytica : a case report and review of the literature”, Infez. Med. Vol.24, No.1, pp.58-61, 2016.

23.

K.M.Jung, G.W.Lee, M.A.Cho, K.J.Song and S.Y.Jung, “Effect of chlorine dioxide in reduction of harmful microbes on fermented hot pepper paste”, Food Sci. Biotechnol., Vol.28, No.6, pp.1795-1800, 2019.

24.

S.Y.Jeong, O.S.Kim and J.Y.Lee, “The status of Healthcare-associated Infection Control among Healthcare Facilities in Korea” J. Digital Policy &Management, Vol.12, No.5, pp.353-366, 2014.

25.

S.W.Jeung, C.H.Lim and I.G.You, “A Study on the Measurement of Bacterial Contamination of MRI Examination Equipment and Disinfection Conditions”, J. Digital Policy & Management, Vol.11, No.12, pp.665-672, 2013.

26.

C.W.Seo, Y.B.Yu, K.S.Shin and Y.K.Kim, “Distribution of Yeast Isolated from Clinical Specimens at a University Hospital in last Five Years, J. Digital Policy & Management, Vol.12, No.9, pp.237-244, 2014.

27.

K.J.Song KJ, S.Y.Jung, “Biocidal effects of chlorine dioxide on isolated and identified pathogens from nosocomial environment biochemical and technical convergence”, J. Digit. Converg., Vol.15, No.6, pp.339-344, 2017.

28.

J.J.Lowe, S.G.Gibbs, P.C.Iwen, P.W.Smith and A.L.Hewlett, “Impact of chlorine dioxide gas sterilization on nosocomial organism viability in a hospital room”, Int. J. Environ. Res. Public Health, Vol.10, No.6, pp.2596-2605, 2013.

29.

Z.Zhu, Y.Guo, P.Yu, X.Wang, X.Zhang, W.Dong, X.Liu and C.Guo, “Chlorine dioxide inhibits the replication of porcine reproductive and respiratory syndrome virus by blocking viral attachment”, Infect. Genet. Evol., Vol.67, pp.78-87, 2019.

30.

K.M.Yang, “The effect of self-esteem and depression on smartphone addiction among university students”, J. Korea Converg. Soc., Vol.7, No.1, pp.113-123, 2016.

한국사물인터넷학회논문지