바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

IEEE 802.11 WLAN 환경에서 최적의 CW 공유 방안

Optimal CW Synchronization Scheme in IEEE 802.11 WLANs

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2020, v.6 no.4, pp.15-19
https://doi.org/https://doi.org/10.20465/kiots.2020.6.4.015
이진이 (한신대학교)
이수빈 (한신대학교)
경연웅 (한신대학교)
  • 다운로드 수
  • 조회수

초록

본 논문은 IEEE 802.11 WLAN 환경에서 최적의 CW(Contention Window) 값을 구하고 해당 값을 네트워크내의 모든 단말들 및 새롭게 접속할 단말들과 공유하는 방법을 제안하고자 한다. IEEE 802.11 WLAN의 기본MAC(Medium Access Control) 방식은 DCF(Distributed Coordination Function)를 지원하는데, DCF는 단말의데이터 전송 성공 여부에 따라 실패 시 CW를 2배로 증가시키고, 성공 시 CW를 초기값으로 초기화시키는 동작을 반복한다. 하지만 이러한 기존의 DCF CW 조정 방식은 하드웨어 칩셋 또는 표준에 정의되어 있는 고정된 CW 초기값을이용해서 동작하기 때문에 네트워크 상황 및 단말의 수에 따른 동적인 변경을 고려하지 않았다. 이를 해결하기 위해최적의 CW 값을 구하는 연구들이 진행되었지만 기존 연구들은 최적의 CW 값에 대한 단말들의 동기화 과정을 고려하지 못하였고 이는 성능 저하를 발생시킬 수 있다. 그러므로 본 연구에서는 네트워크 상황 및 단말의 수를 고려하여 최적의 CW 값을 구하고, 해당 값을 단말들과 동기화 시키는 방안을 제시하고자 한다.

keywords
WLAN, optimal CW, CW synchronization, WLAN, 최적 CW, CW 동기화

Abstract

In this paper, we propose a optimal CW(Conention Window) synchronization scheme in IEEE 802.11 WLANs. IEEE 802.11 WLANs support DCF(Distributed Coordination Function) mode for the MAC(Medium Access Control) operation. In DCF, the CW increases exponentially according to the collisions and becomes minimum CW according to the success of data transmissions. However, since the base minimum CW value is hardware or standard specific, the number of active stations and network status are not considered to determine the CW value. Even though the researches on optimal CW have beend conducted, they do not consider the optimal CW synchronization among mobile stations which occur network performance degradation. Therefore, this paper calculates the optimal CW value and shares it with mobile stations in the network.

keywords
WLAN, optimal CW, CW synchronization, WLAN, 최적 CW, CW 동기화

참고문헌

1.

D.W.Lee, K.Cho, and S.H.Lee, “Analysis on Smart Factory in IoT Environment,” Journal of The Korea Internet of Things Society, Vol.5, No.2, pp.1-5, 2019.

2.

Y.W.Kyung and T.K.Kim, “Flow Handover Management Scheme based on QoS in SDN Considering IoT,” Journal of The Korea Internet of Things Society, Vol.6, No.2, pp.45-50, 2020.

3.

Y.W.Kyung and T.K.Kim, “Service Mobility Support Scheme in SDN-based Fog Computing Environment,”Journal of The Korea Internet of Things Society, Vol.6, No.3, pp.39-44, 2020.

4.

IEEE 802 Part 11 : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification, IEEE Std. 2016.

5.

G.Bianchi, L.Fratta, and M.Oliveri, “Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs,” in Proceedings of the 17th IEEE International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC ’96), Vol.3, pp.391-396, 1996.

6.

F.Cali, M.Conti, and E.Gregori, “IEEE 802.11 protocol:Design and performance evaluation of an adaptive backoff mechanism”. IEEE Journal an Selected Areas in CommiCations, Vol.18, No.9, pp.1774-1780, 2000.

7.

Y.Peng, H.Wu, S.Cheng, and K.Long, "A new self-adapt DCF algorithm,". Global Telecommunications Conference, Vol.1, No.1 pp.87-91, 2002.

8.

Q.Pang, S.C.Liew, J.Y.B.Lee, and V.C.M.Leung, "Performance evaluation of an adaptive backoff scheme for WLAN", Wireless Commun. Mobile Comput., Vol.4, No.8, pp.867-879, 2004.

9.

I.Syed and B.Roh, "Adaptive backoff algorithm for contention window for dense IEEE 802.11 WLANs", Mobile Inf. Syst., Vol.2016, pp.1-11, 2016.

10.

I.Syed, S.Shin, B.Roh, and M.Adnan, "Performance Improvement of QoS-Enabled WLANs Using Adaptive Contention Window Backoff Algorithm," in IEEE Systems Journal, Vol.12, No.4, pp.3260-3270, 2018.

11.

H.Wu, S.Cheng, Y.Peng, K.Long, and J.Ma, "IEEE 802.11 distributed coordination function (DCF):analysis and enhancement," International Conference on Communications. Conference Proceedings, Vol.5, pp.605-609, 2002.

12.

N.Song, B.Kwak, J.Song and M.E.Miller, "Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm,". The 57th IEEE Semiannual Vehicular Technology Conference, Vol.4, pp.2775-2778, 2003.

13.

C.Ke, C.Wei, K.W.Lin, and J.Ding. “A smart exponential-threshold-linear backoff mechanism for IEEE 802.11 WLANs”. Int. J. Commun. Syst. Vol.24, No.8, pp.1033–1048, 2011.

14.

R.Ali, N.Shahin, Y.T.Kim, B.S.Kim, and S.W.Kim, “Channel observation-based scaled backoff mechanism for high-efficiency WLANs,” Electronics Letter, Vol.54, No.10, pp.663-665, 2018.

15.

N.Shahin, R.Ali, S.Kim, and Y.Kim, “Cognitive Backoff Mechanism for IEEE802.11ax High-Efficiency WLANs,”Journal of Communications and Networks, Vol.21, No.2, pp.158-167, 2019.

한국사물인터넷학회논문지