바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

낸드 플래시 메모리 기반 저장 장치의 성능 향상을 위해 결정트리를 이용한 예측 기반 데이터 미리 읽기 정책

A Prediction-Based Data Read Ahead Policy using Decision Tree for improving the performance of NAND flash memory based storage devices

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2022, v.8 no.4, pp.9-15
https://doi.org/https://doi.org/10.20465/kiots.2022.8.4.009
이현섭 (백석대학교)
  • 다운로드 수
  • 조회수

초록

낸드 플래시 메모리는 저전력 소비와 빠른 데이터 처리 속도 때문에 다양한 저장 장치의 미디어로 사용되고 있다. 그러나 데이터의 읽기 처리 속도가 쓰기 처리 속도와 비교하여 약 10배 빠른 비대칭 속도의 특징이 있기 때문에 속도차이를 개선하기 위한 다양한 연구가 진행되고 있다. 특히 플래시 전용 버퍼 관리 정책은 대부분 쓰기 속도를 개선 하기 위해 연구되어 왔다. 그러나 최근에 다양한 목적으로 사용되고 있는 플래시 메모리로 구성된 SSD(solid state disk)는 쓰기 성능보다 읽기 성능에 취약한 문제가 있다. 본 논문에서는 낸드 플래시 메모리로 구성된 SSD에서 쓰기 성능보다 읽기 성능이 더 좋지 않은 이유를 밝히고 이를 개선하기 위한 버퍼 관리 정책을 연구한다. 본 논문에서 제안하 는 버퍼 관리 정책은 읽기 데이터의 패턴을 분석하고 미래에 요청될 데이터를 낸드 플래시 메모리에서 미리 읽어두는 정책을 적용하여 플래시 기반 저장 장치의 속도를 개선하는 방법을 제안한다. 또한, 시뮬레이션을 통해 미리 읽기 정책 의 효과를 증명한다.

keywords
NAND flash memory, storage system, pattern analysis, buffer management policy, read ahead, 낸드 플래시 메모리, 저장시스템, 패턴 분석, 버퍼 관리 정책, 미리 읽기

Abstract

NAND flash memory is used as a medium for various storage devices due to its high data processing speed with low power consumption. However, since the read processing speed of data is about 10 times faster than the write processing speed, various studies are being conducted to improve the speed difference. In particular, flash dedicated buffer management policies have been studied to improve write speed. However, SSD(solid state disks), which has recently been used for various purposes, is more vulnerable to read performance than write performance. In this paper, we find out why read performance is slower than write performance in SSD composed of NAND flash memory and study buffer management policies to improve it. The buffer management policy proposed in this paper proposes a method of improving the speed of a flash-based storage device by analyzing the pattern of read data and applying a policy of pre-reading data to be requested in the future from NAND flash memory. It also proves the effectiveness of the read-ahead policy through simulation.

keywords
NAND flash memory, storage system, pattern analysis, buffer management policy, read ahead, 낸드 플래시 메모리, 저장시스템, 패턴 분석, 버퍼 관리 정책, 미리 읽기

참고문헌

1.

M.K.Kim, I.J.Kim and J.S.Lee, “CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory,” Science Advances , Vol.7, No.3, 2021.

2.

P.Kumari, U.Surendranathan, M.Wasiolek, K. Hattar, N.P.Bhat and B.Ray, “Radiation-Induced Error Mitigation by Read-Retry Technique for MLC 3-D NAND Flash Memory,” IEEE Transactions on Nuclear Science, Vol.68, No.5, 1032-1039, 2021.

3.

S.S.Chae, R.Mativenga, J.Y.Paik, M.Attique, and T.S.Chung, "DSFTL: An efficient FTL for flash memory based storage systems." Electronics Vol.9, No.1, pp.145, 2020.

4.

W.Xie, Y.Chen, and P.C.Poth, "ASA-FTL: An adaptive separation aware flash translation layer for solid state drives," Parallel Computing , Vol.61, pp.3-17, 2017.

5.

I.B.Zion, "Key-value FTL over open channel SSD,"12th ACM International Conference on Systems and Storage . pp.192-192, 2020.

6.

S.Kim and Y.Son, "Optimizing Key-Value Stores for Flash-Based SSDs via Key Reshaping," IEEE Access 9, pp.115135-115144, 2021.

7.

J.H.Park, D.J.Park, T.S.Chung, and S.W.Lee, "A Crash Recovery Scheme for a Hybrid Mapping FTL in NAND Flash Storage Devices," Electronics , Vol.10, No.3, pp.1-20, 2021.

8.

H.Litz, J.Gon, A.Klimovic, and C.Kozyrakis, “RAIL:Predictable, Low Tail Latency for NVMe Flash,” ACM Transactions on Storage ., Vol.18, No.5, pp.1-21, 2022.

9.

Y.Zou, A.Awad, and M.Lin, “DirectNVM: Hardwareaccelerated NVMe SSDs for High-performance Embedded Computing,” ACM Transactions on Embedded Computing Systems , Vol.21, No.9, pp.1-24, 2022.

10.

S.Kim, H.Park, and J.Choi, “Direct-Virtio: A New Direct Virtualized I/O Framework for NVMe SSDs,”Electronics , Vol.10, No.17, pp.1-12, 2021.

11.

C.S.Lee, P.Y.S.Cheang, and M.Moslehpour, “Predictive Analytics in Business Analytics: Decision Tree,”Advances in Decision Sciences , Vol.26, pp.1-29, 2022.

12.

B.Charbuty, and A.Adnan, “Classification based on decision tree algorithm for machine learning,” Journal of Applied Science and Technology Trends , Vol.2, No.1, pp.20-28, 2021.

13.

G.Pappalardo, S.Cafiso, A.D.Graziano, and A.Severino, “Decision Tree Method to Analyze the Performance of Lane Support Systems,” Sustainability, Vol.13, No.2, pp.1-13, 2021.

14.

Q.Zheng, T.Yang, Y.Kan, X.Tan, J.Yang, and X.Jiang, "On the Analysis of Cache Invalidation With LRU Replacement," IEEE Transactions on Parallel and Distributed Systems , Vol.33, No.3, pp.654-666, 2022.

15.

A.A.Titinchi and N.Halasa, "FPGA implementation of simplified Fuzzy LRU replacement algorithm," 16th International Multi-Conference on Systems, Signals &Devices (SSD) , pp.657-662, 2019.

한국사물인터넷학회논문지