바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

데이터 갱신요청의 연속성과 빈도를 고려한 개선된 핫 데이터 검증기법

Improved Hot data verification considering the continuity and frequency of data update requests

한국사물인터넷학회논문지 / Journal of The Korea Internet of Things Society, (P)2466-0078;
2022, v.8 no.5, pp.33-39
https://doi.org/https://doi.org/10.20465/kiots.2022.8.5.033
이승우 (영남이공대학교)
  • 다운로드 수
  • 조회수

초록

모바일 컴퓨팅 분야에서 사용되는 저장장치는 저전력, 경량화, 내구성 등을 갖추어야 하며 사용자에 의해 생성되는 대용량 데이터를 효과적으로 저장 및 관리할 수 있어야 한다. 낸드 플래시 메모리는 모바일 컴퓨팅 분야에서 저장장치로 주로 사용되고 있다. 낸드 플래시 메모리는 구조적 특징 때문에 데이터 갱신요청 시 제자리 덮어쓰기가 불가능하여 데이터 갱신요청이 자주 발생하는 요청과 그렇지 않은 요청을 정확히 구분하여 각 블록에 저장 및 관리함으로써해결할 수 있다. 이러한 데이터 갱신요청에 분류기법을 핫 데이터 식별 기법이라고 하며 현재 다양한 연구가 진행되었다. 본 논문은 더 정확한 핫 데이터 검증을 위해 카운팅 필터를 사용하여 데이터 갱신요청 발생을 연속적으로 기록하고또한 특정 시간 동안 요청된 갱신요청이 얼마나 자주 발생하는지를 고려하여 핫 데이터를 검증한다.

keywords
Nand Flash Memory, FTL, Hot Data Identification, Garbage Collection, Mapping Algorithm

Abstract

A storage device used in the mobile computing field should have low power, light weight, durability, etc., and should be able to effectively store and manage large-capacity data generated by users. NAND flash memory is mainly used as a storage device in the field of mobile computing. Due to the structural characteristics of NAND flash memory, it is impossible to overwrite in place when a data update request is made, so it can be solved by accurately separating requests that frequently request data update and requests that do not, and storing and managing them in each block. The classification method for such a data update request is called a hot data identification method, and various studies have been conducted at present. This paper continuously records the occurrence of data update requests using a counting filter for more accurate hot data validation, and also verifies hot data by considering how often the requested update requests occur during a specific time.

keywords
Nand Flash Memory, FTL, Hot Data Identification, Garbage Collection, Mapping Algorithm

참고문헌

1.

D.Ma, J.Feng, and G.Li, “A Survey of Address Translation Technologies for Flash Memories,” ACM Computing Surveys (CSUR), Vol.46, No.36, pp.1-39, 2014.

2.

T.S.Chung, D.J.Park, D.H.Lee, S.W.Lee, and H.J.Song, “System Software for Flash Memory: A Survey,” EUC 2006: Embedded and Ubiquitous Computing, pp.394–404, 2006.

3.

J.Liu, S.Chen, T.Wu, and H.Zhang, “A Novel Hot Data Identification Mechanism for NAND Flash Memory,”IIEEE Transactions on Consumer Electronics, Vol.61, Issue.4, pp.463-469, 2015.

4.

J.W.Hsieh, T.W.Kuo, and L.P.Chang, “Efficient identification of hot data for flash memory storage systems,” ACM Transactions on Storage (TOS), Vol.2, Issue.1, pp.22-40, 2006.

5.

H.S.Lee, H.S.Yun, and D.H.Lee, “HFTL:Hybrid Flash Translation Layer based on Hot Data Identification for Flach Memory,” IEEE Transactions on Consumer Electronics, Vol.55, Issue.4, pp.2005-2011, 2009.

6.

S.O.Park, and S.J.Kim, “An efficient file system for large-capacity storage with multiple NAND flash memories,” 2011 IEEE International Conference on Consumer Electronics (ICCE), pp.399-400, 2011.

7.

Y.J.Lee, H.W.Kim, H.J.Kim, T.Y.Huh, S.H.Jung, and Y.H.Song, “Adaptive Mapping Information Management Scheme for High Performance Large Sale Flash Memory Storages,” Journal of the Institute of Electronics and Information Engineers, Vol.50, Issue.3, pp.78-87, 2013.

8.

D.C.Park, and David H.C.D, “Hot data identification for flash-based storage systems using multiple bloom filters,” 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies(MSST), pp.1-12, 2011.

9.

S.Jiang, L.Zhang, X.Yuan, H.Hu, and Y.Chen, “S-ftl:An efficient address translation for flash memory by exploiting spatial locality,” IEEE/NASA Goddard Conference on Mass Storage Systems and Technologies (MSST), pp.1-12, 2011.

10.

J.W.Hsieh, T.W.Kuo, and L.P.Chang, “Efficient identification of hot data for flash memory storage systems,” ACM Transactions on Storage (TOS), Vol.2, Issue.1, pp.22-40, 2006.

11.

H.S.Lee, H.S.Yun, and D.H.Lee, “HFTL:Hybrid Flash Translation Layer based on Hot Data Identification for Flach Memory,” IEEE Transactions on Consumer Electronics, Vol.55, Issue.4, pp.2005-2011, 2009.

12.

O.Rottenstreich, and I.Keslassy, “The Bloom Paradox:When Not to Use a Bloom Filter,” IEEE/ACM Transactions on Networking, Vol.23, Issue.3, 2012.

13.

L.P.Chang, “On efficient wear leveling for large-scale flash-memory storage systems,” SAC '07: Proceedings of the 2007 ACM symposium on Applied computing, pp.1126-1130, 2007.

14.

H.S.Lim, J.W.Lee and C.H.Yim, “Complement Bloom Filter for Identifying True Positiveness of a Bloom Filter,” IEEE Communications Letters, Vol.19, Issue.11, pp.1905-1908, 2015.

15.

P.Lin, F.Wang, W.Tan, and H.Deng, “Enhancing Dynamic Packet Filtering Technique with d-Left Counting Bloom Filter Algorithm,” International Workshop on Intelligent Networks and Intelligent Systems (ICINIS), pp.530-533, 2009.

한국사물인터넷학회논문지