
 Dong-Hun HAN, Jeong-Hyun CHOI, Myung-Jae LIM / Korean Journal of Artificial Intelligence Vol9 No 2 (2021) 35-40 35

ISSN: 2508-7894 © 2021 KODISA & KJAI.

KJAI website: http://www.kjai.or.kr

doi: http://dx.doi.org/10.24225/kjai.2021.9.2.35

A Study on 2D Character Response of Speed Method Using Unity
*

Dong-Hun HAN¹, Jeong-Hyun CHOI² , Myung-Jae LIM³

Received: October 12, 2021. Revised: November 18, 2021. Accepted: December 05, 2021.

Abstract

In this paper, many game companies seek better optimization and easy-to-apply logic to prolong the game's lifespan and provide a

better game environment for users. Therefore, research will be showing the game's key input response method called RoS

(Response of Speed). The purpose of the method is to simultaneously perform various motions with the character showing natural

motion without errors even if the character's control key is duplicated. This method is for the developers so they can reduce bugs

and development time in future game development. To be used with quickly generating game environments, the new method

compares with the popular motion method, so which method is faster and can adapt to diverse games. The paper suggested that the

Response of Speed method is a better method for optimizing frames and reducing the number of reacting seconds by showing a

faster response and speed). With the method popularity of scrollers, many 2D cross-scroll games follow the formula of Dash,

Shoot, Walk, Stay, and Crouch. With the development of game engines, it is becoming easier to implement them. Therefore,

although the method presented in the above paper differs from the popular method, it is expected that there will be no great

difficulty in applying it to the game because transplantation is easy. In the future, we plan to study to minimize the delay of each

connection of the character motion so that the game can be optimized to best.

Keywords : Unity, Motion, Character, platformer, speed, response

Major Classification Code: Artificial Intelligence, etc

1. Introduction12

Game development is the process of using graphics

libraries, game engines, and image editing software to

* This Work was Supported by the Research Grant of the KODISA

Scholarship Foundation in 2021
1 First Author. Dept. of Medical IT & Marketing, Eulji University.

Korea, Email: d555v@naver.com
2 Corresponding Author. Director, LG Uplus corporation, Korea,

Email: nevergiveup@lguplus.co.kr
3 Corresponding Author. Professor, Department of Medical IT, Eulji

University, Korea, Email: lk04@eulji.ac.kr

ⓒ Copyright: The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://Creativecommons.org/licenses/by-nc/4.0/)
which permits unrestricted noncommercial use, distribution, and reproduction in any

medium, provided the original work is properly cited.

display images on the screen and let the player manipulate

the images on the screen to create experiences and tell the

player a story. In the early 80s, scrolling was a difficult

task, and the developer had to face limitations such as

CPU, memory capacity, and segmentation. Even with those

challenges, some great side-scrollers were released,

gracefully overcoming these limitations. However, in

many cases, the motion was understandably simplistic or

low-resolution It's remarkable that back in 1980, it used the

default position-locking mechanism, keeping the car in

focus at all times and the camera motion completely

predictable (Keren, 2015). Even with th

ose challenges, some great side-scrollers were released,

gracefully overcoming these limitations. However, in

many cases, the motion was understandably simplistic or

low-resolution (Bhosale, Kulkarni, Patankar, 2018).

36 Dong-Hun HAN, Jeong-Hyun CHOI, Myung-Jae LIM / Korean Journal of Artificial Intelligence Vol9 No 2 (2021) 35-40

Since then, character motion has been one of the main

factors in the game. Game companies have their algorithms

and scripts to prevent errors, but several Bugs and errors

have a profound adverse effect on sales for game

companies. In this paper, we introduce motion animators

according to player input by using a simple game made by

Unity engines. These are widely used by many

companies, such as indies and large game companies.

2. Literature Review

2.1. Motion Response and Movement

Motion response plays a very important role in games. A

good rule of thumb is that the game should always respond

to the player's expectations. Characters that move

according to various situations add more vitality when they

are played. A lot of games have different motions and

movements such as incrementally increasing, decreasing

player velocity over time until they reach max speed. The

following two logics are the most popular methods for

motion response.

Title: Accelerating and decelerating pseudo-code

-- Get left/right input
 if left keyboard is Down then
 player.xVelocity = player.xVelocity + (-

player.maxSpeed*player.acceleration*dt) #Player go
left with left velocity

 else if right keyboard is Down then
 player.xVelocity = player.xVelocity +

(player.maxSpeed*player.acceleration*dt) # Player
go right with right velocity

 else
if player.xVelocity < 0
then

 player.xVelocity = player.xVelocity +
(player.deceleration*player.maxSpeed*dt)

 if player.xVelocity > 0
then

 player.xVelocity = 0
#Player stop

 end
 else if player.xVelocity > 0

then
 player.xVelocity = player.xVelocity -

(player.deceleration*player.maxSpeed*dt)
 if player.xVelocity < 0

then
 player.xVelocity = 0

#Player stop
 end
 end
 end

Figure 1: Accelerating and decelerating pseudo-code

Figure 2 shows accelerating and decelerating methods. It

is useful for making character motions and movements.

Acceleration is often divided into horizontal and vertical

acceleration. If the character has horizontal acceleration, it

takes some time for the character to reach the maximum

running velocity, so it can be sluggish (Minkkinen, 2016).

Another popular method is the DeltaTime method. It is

based on FPS (Frame per second) which is the interval of

seconds at which physics and other fixed frame rate

updates. It took to complete the last frame (jlett, 2011).

Title: DeltaTime method pseudo-code

Player.x = move character in X axis
If horizontal arrow key is pushed

Player.x* player.basespeed * Time.deltaTime
Weight = body.velocity
movement = Player.x*body.velocity.y
#Player move horizontal with it’s frame rate
end

Figure 2: DeltaTime method pseudo-code

 Figure 3 shows a short but effective method. But it

depends on the game's frame rate so, under 20 FPS, the

motion will be stuttering (Hocking, 2018).

3. Related Research

3.1. Unity Game Engine

Unity, introduced in 2005, is a 3D/2D game engine and

powerful cross-platform IDE for developers. The functions

that are supported by Unity3D are very abundant. Unity3D

produces applications based on JavaScript and/or C#.

These are used to assign the animation or real-time

transition of the Game-Objects defined in the application.

The GUI of Unity3D helps a new developer to approach

easily and script and program the transition of the Game-

Object (Nachammai, & Senthil-Ganesan, 2018). As the

game engine, Unity is able to provide many of the most

important built-in features that make a game work. That

means things like physics, 3D rendering, and collision

detection. From a developer's perspective, this means that

there is no need to reinvent the wheel. Rather than starting

a new project by creating a new physics engine from

 Dong-Hun HAN, Jeong-Hyun CHOI, Myung-Jae LIM / Korean Journal of Artificial Intelligence Vol9 No 2 (2021) 35-40 37

scratch–calculating every last movement of each material,

or the way light should bounce off of different surfaces

(Sinicki, 2021).

3.2. Colider 2D

In Unity3D engines, there are frequently used functions

for collisions, especially OnCollision and OnTrigger. The

difference between OnCollision and OnTrigger is whether

the character can pass through the collision, and

OnCollision cannot pass, but OnTrigger can pass (Kim,

2018).

Collider 2D components define the shape of a 2D

GameObject for the purposes of physical collisions in

OnCollision. A Collider, which is invisible, need not be the

exact same shape as the GameObject’s Mesh. In fact, a

rough approximation is often more efficient and

indistinguishable in gameplay (Unity, 2021).

Box Collider 2D is a Collider that interacts with the 2D

physics system. It is a rectangle in shape with a defined

position, width and height in the local coordinate space of a

Sprite. Note that the rectangle is axis-aligned, with its

edges parallel to the X or Y axes of local space. When

enable Used by Composite, other properties disappear

from the Box Collider 2D component, because they are

now controlled by the attached Composite Collider 2D.

The properties that disappear from the Box Collider 2D

are Material, Is Trigger, Used By Effector, and Edge

Radius (Unity, 2021).

Physics 2D Raycaster raycasts against 2D objects in the

scene. This allows messages to be sent to 2D physics

objects that implement event interfaces. The Camera

GameObject needs to be used and will be added to the

GameObject if the Physics 3D Raycaster is not added to

the Camera GameObject (Unity, 2021).

3.3. Animator

An Animator Controller is a Unity asset that controls the

logic of an animated GameObject. Within the Animator

Controllers, there are States and Sub-State Machines that

are linked together via Transitions. States are the

representations of Animation Clips in the Animator.

Transitions direct the flow of animation from one State to

another. An Animator Controller allows you to arrange and

maintain a set of Animation Clips and associated

Animation Transitions for a character or object. In most

cases, it is normal to have multiple animations and switch

between them when certain game conditions occur. For

example, you could switch from a walk Animation Clip to

a jump Animation Clip whenever the spacebar is pressed.

However, even if you only have a single Animation Clip,

you still need to place it into an Animator Controller to use

it on a GameObject. The Animator Controller has

references to the Animation clips used within it and

manages the various Animation Clips and the Transitions

between them using a State Machine, which could be

thought of as a flow-chart of Animation Clips and

Transitions, or a simple program written in a visual

programming language within Unity (Unity, 2021).

4. Motion Logic Experiment

4.1. Character Design

Unity engine is known for various assets that can be used

in any project or game. In this paper, character design as

shown in Figure 1 was conducted using an asset called

“Warped City Assets”.

Figure 3: Character Model

4.2. Motion Logic Design

The important thing about game character motion is that

the motions connect with various keys at each time.

Because of that, the character's motions were classified

into Idle, Run, Jump, Shoot, and Crouch. Designing this

motion, Animator 2D and C# script provided by the Unity

engine were used.

38 Dong-Hun HAN, Jeong-Hyun CHOI, Myung-Jae LIM / Korean Journal of Artificial Intelligence Vol9 No 2 (2021) 35-40

Figure 4: Animator Layer

In Figure 4, every arrow has bool type script that

controls character movement. Each Bool type is designated

as isWalking, isJumping, isRunning, isCrouch, isShooting.

When the player presses the control key, the character

moves according to the motion logic of Figure 5.

Figure 5: Motion Logic

BoxColider2D and PlatformColider2D are applied to the

characters and platforms, and Raycast 2D is applied to the

characters' collision decisions. When the distance between

the character and the platform is 0.65f during the jump, the

player is released into the Jump motion state. It comes over

to the Stay state. The code to be implemented is as follows.

Title: Response of Speed method Pseudo-code

#Player
set Box2Dcolider (0.6x0.6)

#Walk
Player.speed = move character in X axis
if left arrow key is pushed

Player.Xspeed = 1
if right arrow key is pushed

Player.Xspeed = -1
if both arrow key is pushed

Player.Xspeed = 0
end

end

#Running
if shift key pushed

Player.Xspeed = 2.5
else if left arrow key is pushed
Player.Xspeed = 2.5

 else if right arrow key is pushed
Player.Xspeed = -2.5

else if both arrow key is pushed
Player.Xspeed = 0

else
 player.speed = 1
end

#Crouch
If down arrow key is pushed

Player.Xspeed = 0
motion change in to crouch
disable stand motion
disable jump motion #unity animator bull control
end

If down arrow key is not pushed
motion change in to stand motion
enable jump motion
disable crouch motion
#unity animator bull control
end

#Jump
gravity = 1
If space key pushed
 Player.jumpPower = 3 #3 pixel

Player.Yspeed = 2
go Y axis up and down in 2 second
enable jump motion
disable stand motion
disable crouch motion
#unity animator bull control
end
If platform distance < 0.65f
 disable jump motion
 enable stand motion

 enable crouch motion
#unity animator bull control

 end
end

Figure 6: Response of Speed method Pseudo-code

 Dong-Hun HAN, Jeong-Hyun CHOI, Myung-Jae LIM / Korean Journal of Artificial Intelligence Vol9 No 2 (2021) 35-40 39

4.3. Implementation

Figure 4 describes the basic logic in which the character

reacts when entering a specific key on the keyboard.

Entering the left turn-key based on the keyboard, the

character speed is set to 1 and enables walking motion to

the left. Entering the right turn-key, the character speed is

set to -1 and enables walking motion to the right. When

multiple keys are input at the same time, the speed is set to

zero at the last motion and the same motion is repeated to

prevent the character from taking a different motion from

the last input key. When crouching, every speed sets to 0

and motion stays in a crouch position.

4.4. Test

The test compares with the response of the speed method

introduced in the paper and two popular methods

introduced so far. The comparison method uses macros

built into the keyboard to manipulate characters at the same

time, same speed, and same frictional force to input various

keys.

After entering the key, two flags are set up on both sides

to measure the speed at which the character goes from the

A flag to the B flag to determine the reaction speed of each

method. Flag A to B distance is 100 pixels and speed is 1.

In theory, speed 1 sets a distance of 100 pixels to a distance

of 1 second. The test proceeds 10 times, and the time and

character reaction speed are determined by the average

value. In the case of key reaction speed, the keyboard, and

the game are linked to measuring the speed until the

character reacts. All tests were conducted at a resolution of

1280×720 with a fixed 60 FPS.

5. Results

As a result, in the case of the Accelerating and

Decelerating method, it took 1.11 seconds from flag A to B.

When entering the keyboard, the character's time lag took

0.02 seconds. In the case of the Delta Time method, the

time from A to B took 1.16 seconds and in the case of

React Time, it took 0.03 seconds. The new method,

Response of Speed, took 1.08 seconds and the reaction rate

was 0.02 seconds.

Table 1: Testing react and speed about Method

Method
Flag A to B

Time
Key react speed

Accelerating and
decelerating

1.11 second 0.02 second

Delta Time 1.16 second 0.03 second

Response of Speed 1.08 second 0.02 second

6. Conclusion

This paper presents one of several ways in which the

character shows natural motion without errors even if the

character's control key is duplicated using the Unity engine.

In the flag A to B time test, the Response of Speed method

is 0.08 seconds faster than the Delta Time method and 0.03

seconds faster than the Accelerating and Decelerating

method. In react speed test, the RoS method was the same

time as the Accelerating and Decelerating method but

faster than Delta time by 0.01 seconds. It concludes that

the RoS method is better than the other 2 methods.

Since all games have their characteristics, it is difficult to

be sure that they use the same motion logic presented in

this paper. However, with the popularity of scrollers, many

2D cross-scroll games follow the formula of Dash, Shoot,

Walk, Stay, and Crouch. With the development of game

engines, it is becoming easier to implement them.

Therefore, although the method presented in the above

paper differs from the popular method, it is expected that

there will be no great difficulty in applying it to the game

because transplantation is easy. In the future, we plan to

study to minimize the delay of each connection of the

character motion so that the game can be optimized to best.

References

Bhosale, T., Kulkarni, S., Patankar N. S. (2018). 2D

PLATFORMER GAME IN UNITY ENGINE.

International Research Journal of Engineering and

Technology. 05(04), 3021-3024. Retrieved from

https://www.irjet.net/archives/V5/i4/IRJET-

V5I4667.pdf

40 Dong-Hun HAN, Jeong-Hyun CHOI, Myung-Jae LIM / Korean Journal of Artificial Intelligence Vol9 No 2 (2021) 35-40

Hocking, J. (2018). Unity in Action. chapter-6/1

https://livebook.manning.com/book/unity-in-action-

second- edition/chapter-6/1

Itay Keren (2015). Scroll Back: The Theory and Practice

of Cameras in Side-Scrollers. Retrieved from

https://docs.google.com/document/d/1iNSQIyNpVGHe

ak6isbP6AHdHD50gs8MNXF1GCf08efg/pub

Jellt (2011). Advanced Platformer Movement. Retrieved

from https://www.instructables.com/Advanced-

Platformer- Movement/

Kim, H. (2018). Design of Runner Game using Overlap

Circle in Unity3D. Retrieved from

https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ci

SereArtiView.kci?sereArticleSearchBean.artiId=ART0

02377531

Minkkinen, T. (2016). Basics of Platform Games.

Retrieved from

https://core.ac.uk/download/pdf/80991297.pdf

Nachammai, P. M. L., Senthil-Ganesan T. M. (2018). 3D

Game Development Using Unity Game Engine.

International Journal of Scientific & Engineering

Research, 9(3), 1353-1356

Sinicki, A. (2021). What is Unity? Everything you need to

know and roidauthority. Retrieved from

https://www.androidauthority.com/what-is-unity-

1131558/

Unity Document 2021a). Collider 2D. Retrieved from

https://docs.unity3d.com/Manual/Collider2D.html

Unity Document (2021b). Box Collider 2D. Retrieved from

https://docs.unity3d.com/Manual/class-

BoxCollider2D.html

Unity Document (2021c). Physics 2D Raycaster. Retrieved

from https://docs.unity3d.com/Packages/com.unity.ug-

ui@.0/manual/script-Physics2DRaycaster.html

Unity Document (2021d). Animator Controller. Retrieved

from https://docs.unity3d.com/Manual/class-

AnimatorController.html

Unity Learn (2021). Animator Controllers” Retrieved from

https://learn.unity.com/tutorial/animator-

controllers#5cdd9db3edbc2a1cdd86bfe5

