바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Korean Journal of Artificial Intelligence / Korean Journal of Artificial Intelligence, (E)2508-7894
2018, v.6 no.2, pp.11-15
https://doi.org/https://doi.org/10.24225/kjai.2018.6.2.11
Ryu, Dong-Won

Abstract

Breast cancer is one of the leading causes of cancer related death among women. So prediction of overall survival status is important into decided in adjuvant treatment. Deep belief network is a kind of artificial intelligence (AI). We intended to construct prediction model by deep belief network using associated clinicopathologic factors. 103881 cases were found in the Korean Breast Cancer Registry. After preprocessing of data, a total of 15733 cases were enrolled in this study. The median follow-up period was 82.4 months. In univariate analysis for overall survival (OS), the patients with advanced AJCC stage showed relatively high HR (HR=1.216 95% CI: 0.011-289.331, p=0.001). Based on results of univariate and multivariate analysis, input variables for learning model included 17 variables associated with overall survival rate. output was presented in one of two states: event or cencored. Individual sensitivity of training set and test set for predicting overall survival status were 89.6% and 91.2% respectively. And specificity of that were 49.4% and 48.9% respectively. So the accuracy of our study for predicting overall survival status was 82.78%. Prediction model based on Deep belief network appears to be effective in predicting overall survival status and, in particular, is expected to be applicable to decide on adjuvant treatment after surgical treatment.

keywords
Overall Survival Status, Deep Belief Network, <tex> $Python^{(R)}$</tex>, Breast Cancer, Breast Cancer Society

Korean Journal of Artificial Intelligence