
Data Paper https://doi.org/10.23287/KJDH.2024.1.1.7

- 137 -

Table of Contents
1. Data
1.1 Dataset Description
1.2 Dataset Structure and Content
2. Running the Script
3. Reuse Potential

Abstract
The “Shakespearean Character Network” dataset leverages XML editions of Shakespeare’s plays from the Folger Shakespeare
Library to analyze character interactions and dynamics within the plays. These XML files, containing detailed textual data
such as dialogue and stage directions, are processed using the Python script in the repository. The script generates matrices
that document character presence on stage and their verbal exchanges, stored in various directories such as output_onstage and
output_exchange. Additionally, visualizations like heatmaps and network graphs offer visual and quantifiable insights into
character co-presence and communication patterns. Centrality measures and clustering indices, computed for these interaction
networks, further enhance the analysis by quantifying the degree of character clustering and the intensity of their interactions.
The dataset aims to provide a comprehensive view of the structural relationships in Shakespeare’s plays. This resource is for
researchers aiming to explore the dynamics of Shakespearean characters through a combination of computational methods and
literary analysis.
Keywords: Character Network Analysis, Shakespeare, Digital Humanities, Dramatic Structure.

1. Data

1.1 Dataset Description

Repository Location: Github

Repository Name: shakespearean_character_network

Dataset Location:
https://github.com/hkim1596/shakespearean_character_network
https://hkim1596.github.io/shakespearean_character_network

Creation Date: May 15, 2024

∗Author: Department of English Language and Literature, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu,
Republic of Korea, hkim1596@gmail.com

Shakespearean Character Network Dataset

Kim, Heejin∗
 0000-0003-4522-8968

https://doi.org/10.23287/KJDH.2024.1.1.7
https://github.com/hkim1596/shakespearean_character_network
https://hkim1596.github.io/shakespearean_character_network/
mailto:hkim1596@gmail.com

Data Paper

- 138 -

Dataset Creator: Heejin Kim

1.2 Dataset Structure and Content

data Directory
The dataset is based on Folger Shakespeare editions encoded as XML documents, which are freely available on
their website: https://www.folger.edu/explore/shakespeares-works/download.1 These XML editions are stored in
the data directory of the GitHub repository. The XML documents represent digital transcriptions of Shakespeare’s
plays and are used to encode documents in a format that is both human-readable and machine-readable. The Folger
Shakespeare editions in XML format provide detailed textual data, including character dialogue, stage directions,
and other critical annotations. Importantly, these XML editions offer accurate and machine-readable information
on the entrance and exit of characters, which is crucial for analyzing character interactions and dynamics. These
files are essential for the dataset as they offer a standardized, rich textual source that can be parsed and analyzed
to extract character interactions and other relevant information for the project. By utilizing these XML files, the
dataset ensures accuracy and consistency in representing Shakespeare’s original texts.

output_onstage Directory
The output_onstage directory contains files that document the onstage interactions of characters across
Shakespeare’s plays. These files in .csv (Comma-Separated Values) format are created using the main.py script,
which processes XML files from the Folger Shakespeare Library to extract and quantify character interactions.
The script analyzes each line to identify which characters are present together on stage and then constructs
matrices representing these interactions. In these matrices, the rows correspond to characters and the columns
represent Folger Through Line Numbers (FTLN). The FTLN columns indicate specific points in the narrative,
effectively mapping the temporal sequence of the play. The cell values within these matrices denote the presence
or absence of characters at particular narrative points, with 0 representing absence and 1 representing presence.

output_onstage_heatmap Directory
The output_onstage_heatmap directory contains heatmap visualizations that depict the onstage co-presence of
characters. These heatmaps are generated from the data in the output_onstage matrices, providing a visual
representation of how often characters appear together in scenes. The heatmaps facilitate a quick and intuitive
understanding of character interactions and dynamics, making it easier to identify clusters of characters based on
their onstage or offstage status. HTML files in the directory can be opened using any standard web browser,
allowing for an interactive exploration of the visualizations. Additionally, the .png files in the directory are non-
interactive versions of the .html files with fewer details. These static images can be easily viewed without the
need for a web browser.

output_onstage_matrix Directory
The output_onstage_matrix directory contains .csv files that provide interaction matrices derived from the
matrices in the output_onstage directory. Each file contains a matrix where both the rows and columns correspond
to the characters in a play. The cells in these matrices quantify the number of lines in which each pair of characters
appears together, allowing for a further analysis of character co-presence and interactions throughout the play.
These matrices are essential for conducting network analysis and understanding the structural relationships
between characters in Shakespeare’s plays.

Additionally, the directory includes .html files, along with .png files with fewer details, that visualize these
interaction matrices using the NetworkX library. NetworkX is a Python library used for the creation, manipulation,

https://www.folger.edu/explore/shakespeares-works/download/#henry-vi-part-1

Data Paper

- 139 -

and study of complex networks of nodes and edges.2 The visualizations employ a spring layout, which simulates
a physical system where nodes repel each other while edges act as springs pulling related nodes together.3 This
layout helps in creating aesthetically pleasing and informative representations of the network structure. In the
visualizations, the shape of the nodes represents different groups of characters identified using the K-means
clustering method with k = 2, while the color of the nodes indicates different groups of characters determined by
the Louvain method.4 The K-means method partitions the characters into two clusters based on their interactions,
while the Louvain method, a community detection algorithm, identifies clusters of characters that are more
densely connected internally than with the rest of the network. This combination of methods provides a
comprehensive view of character dynamics and their social structure within the plays.

output_onstage_matrix_modified Directory
The output_onstage_matrix_modified directory contains modified versions of the interaction matrices found in
the output_onstage_matrix directory. These modified matrices have been refined to remove characters who are
mostly isolated with almost no interactions with other characters, such as prologue, epilogue, and citizens 1, 2,
and 3 in Richard III. These outliers can interfere with community detection methods by appearing as standalone
communities, making it difficult to understand the clustering patterns of the majority of characters. By removing
these outliers, the matrices in this directory provide a clearer and more useful representation of the main character
interactions, thereby facilitating more effective network analysis and community detection.

output_exchange Directory
The output_exchange directory contains matrices that document the amount of dialogue exchanged between
characters. Unlike the output_onstage_matrix files, which focus on the presence of characters on stage together,
the output_exchange matrices quantify the number of words spoken between each pair of characters. The main.py
script processes the XML files in the data directory to calculate these exchanges. It assigns speakers and listeners
for each line of dialogue by parsing the text and identifying who is speaking. The assumption made is that all
characters on stage are listeners while a speaker gives his or her lines. In these matrices, the columns represent
the speakers, while the rows represent the listeners. The cell values indicate the total number of words spoken by
one character to another, offering a detailed view of verbal interactions. These matrices are essential for
understanding the communication dynamics within the plays, highlighting which characters interact the most
through dialogue. By analyzing these dialogue exchanges, researchers can gain insights into the relationships and
influence of characters based on their verbal interactions. The data in the output_exchange matrices provide a
complementary perspective to the onstage presence data, offering a more nuanced view of character interactions
within Shakespeare’s plays.

output_exchange_heatmap Directory
The output_exchange_heatmap directory contains heatmap visualizations of the dialogue exchanges between
characters. These heatmaps are generated from the data in the output_exchange matrices and provide a visual
representation of the intensity and frequency of verbal interactions. The heatmaps help to quickly identify which
characters engage most frequently in dialogue, making it easier to discern communication patterns and key
relationships within the plays.

output_exchange_modified Directory
The output_exchange_modified directory contains modified versions of the interaction matrices found in the
output_exchange directory. These files have been refined similarly to those in the output_onstage_matrix_modified
directory, removing characters who are mostly isolated and have minimal interactions with other characters.

Data Paper

- 140 -

output_scores Directory
The output_scores directory contains files that calculate various network centrality measures and clustering
indices for both exchange and onstage interaction matrices. Specifically, the degree centralization scores,
betweenness centrality scores, closeness centrality scores, eigenvector centrality scores, Dunn Index, and
silhouette scores are computed for the networks derived from the character interactions. Degree centralization
measures how centralized the network is by evaluating the variance of node degrees, with the formula summing
the differences between the maximum degree and each node’s degree, normalized by the theoretical maximum.
Betweenness centralization identifies nodes that act as bridges by measuring the number of shortest paths passing
through each node, summing the differences between the maximum betweenness centrality and each node’s
betweenness, and normalizing this sum. Closeness centralization assesses how quickly information spreads from
a given node to others by calculating the average shortest path length. The centralization score sums the
differences between the maximum closeness centrality and each node’s closeness, then normalizes the total.
Eigenvector centralization evaluates the influence of nodes based on their connections to other high-scoring nodes,
summing the differences between the maximum eigenvector centrality and each node’s eigenvector centrality,
and normalizing the total. The Dunn Index and silhouette scores are used to evaluate the quality of clusters formed
by the character interactions. The Dunn Index is calculated as the ratio of the minimum inter-cluster distance to
the maximum intra-cluster distance, highlighting the compactness and separation of clusters.

These scores are visualized using bar graphs and box plots, generated by the plot_scores function in the main.py
script. In the bar graphs, the x-axis represents the different plays, ordered chronologically according to the
conjectured year of composition as per the New Oxford Shakespeare edition to maintain consistency and ease of
comparison across the visualizations.5 The y-axis shows the respective centrality or clustering score, allowing for
a comparative view of how different plays rank in terms of their network metrics. Different colors are used for
the bars to distinguish between genres of the plays: comedies are colored light blue, tragedies are colored slate
gray, histories are colored red, and plays with an unidentified genre are colored light gray. This color-coding
facilitates an immediate visual distinction between different genres, enhancing the interpretability of the graphs.
The box plots provide additional insights into the distribution and variability of these scores across all plays. For
each centrality measure and clustering index, the box plots depict the median, quartiles, and potential outliers,
offering a more detailed statistical summary. These visualizations facilitate a comprehensive understanding of the
structural and communicative dynamics in Shakespeare’s plays, highlighting variations in character interactions
and network properties across different works.

Python Code: main.py
The main.py script in the repository (see fig. 1) serves as the primary engine for processing and analyzing character
interactions within Shakespeare’s plays. It begins by importing necessary libraries such as scikit-learn,
Community API, and NetworkX, and defining key functions for parsing XML files from the Folger Shakespeare
Library. The script reads these XML files to extract detailed information about character dialogues and stage
directions. By parsing this data, main.py generates various data structures, including onstage presence matrices
and interaction matrices, which are then stored in the appropriate directories. These matrices quantify character
co-presence and dialogue exchanges, providing a foundation for further analysis. The script also includes
functions to compute network centrality measures and clustering indices, allowing for a detailed exploration of
the character networks within the plays.

Data Paper

- 141 -

Figure 1. Snippet of code in main.py

2. Running the Script

To run main.py, users need to ensure that Python and the required libraries are installed, then execute the script
from the command line with python main.py. This process will generate the corresponding output files in the
specified directories. Researchers can modify the script by adjusting the input data, altering the parsing logic, or
customizing the analysis and visualization methods to suit specific research needs. This flexibility enables a
tailored exploration of various aspects of Shakespeare’s plays, enhancing the understanding of character
interactions and dynamics.

3. Reuse Potential

The “Shakespearean Character Network” dataset is openly available for anyone to use, providing a resource for
writing papers and conducting various forms of research. For instance, my own article titled “Shakespearean
Character Network Analysis: Residual Dramatic Structures of Medieval Touring Companies and Neoclassical
Unity” utilizes a part of the dataset to investigate structural unity in Renaissance drama.6 The paper employs

Data Paper

- 142 -

network analysis to trace the influence of medieval touring companies on 16th-century dramatic structures, using
community detection algorithms and silhouette scores to analyze bipartite or multipartite structures across 38
Shakespearean plays. This aims to demonstrate the dataset’s versatility and potential for exploring diverse
research questions within the fields of digital humanities and literary analysis. Researchers are encouraged to
leverage this dataset to further their understanding of character interactions, narrative structures, and other aspects
of Shakespeare’s plays. The flexibility and depth of the dataset make it a tool for enhancing the scope and depth
of digital humanities research.

1 The Folger Shakespeare digital edition is widely used in Shakespeare studies and digital humanities projects. See Folgert
Karsdorp, Mike Kestemont, and Allen Riddell. (2021). Humanities Data Analysis - Case Studies with Python. Princeton
University Press.
2 Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. (2008). “Exploring Network Structure, Dynamics, and Function
Using NetworkX.” Proceedings of the 7th Python in Science Conference 11–15.
https://networkx.org/documentation/stable/reference
3 https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
4 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://python-louvain.readthedocs.io/en/latest/api.html
5 Gary Taylor and Gabriel Egan, eds. (2017). The New Oxford Shakespeare Authorship Companion. Oxford University Press.
6 Heejin. Kim (2024). “Shakespearean Character Network Analysis: Residual Dramatic Structures of Medieval Touring
Companies and Neoclassical Unity.” In/Outside 56 18-56. https://doi.org/10.46645/inoutsesk.56.1

References

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart. (2008). “Exploring Network Structure, Dynamics, and Function
Using NetworkX.” Proceedings of the 7th Python in Science Conference 11–15.

Karsdorp, Folgert, Mike Kestemont, and Allen Riddell. (2021). Humanities Data Analysis - Case Studies with Python.
Princeton University Press.

Kim, Heejin. (2024). “Shakespearean Character Network Analysis: Residual Dramatic Structures of Medieval Touring
Companies and Neoclassical Unity.” In/Outside 56 18-56.

Taylor, Gary, and Gabriel Egan, eds. (2017). The New Oxford Shakespeare Authorship Companion. Oxford University Press.

https://networkx.org/documentation/stable/reference
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://python-louvain.readthedocs.io/en/latest/api.html
https://doi.org/10.46645/inoutsesk.56.1

