
- 1083 -

한국심리학회지 : 일반

Korean Journal of Psychology: General

2011, Vol. 30, No. 4, 1083-1110

Empirical Comparisons of Analytic Strategies for MIMIC DIF

Analysis: A Potential Solution for Biased Anchor Set

Jaehoon Lee

University of Kansas

The purpose of this Monte Carlo study was to evaluate the performance of the multiple indicators and

multiple causes (MIMIC) confirmatory factor analysis (CFA) for detecting differential item functioning
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potential solution for arbitrary choice of a DIF-free anchor set. Simulation results indicated that when an
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inflated (with uncorrected LR) as the DIF contamination rate in a scale decreased.
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It has been a common practice for applied

psychologists to recognize measurement equivalence

(ME) for fair use of a test1 (see AREA, APA,

NCME, 1999). Moreover, many researchers have

emphasized evaluating ME as a prerequisite for

meaningful group comparison (e.g., Drasgow,

1984; Little, 1997; Raju, Laffitte, & Bryne,

2002; Reise, Widaman, & Pugh, 1993; Vandenberg

& Lance, 2000). To the extent that a scale does

not hold ME, any interpretations of group

differences, as indicated by differences in scores

at the item level, at the scale level, or at both,

are necessarily open to questionobserved score

differences may represent true differences in

underlying (latent) trait across groups, measurement

artifacts related to the instrument, or both

(Byrne & Stewart, 2006; Drasgow, 1987; Lee,

Little, & Preacher, 2010; Stark, Chernyshenko, &

Drasgow, 2004). Thus, such practice of assessing

ME requires a methodology that can distinguish

measurement artifacts, or lack of ME, from true

differences in the relevant construct (Stark,

Chernyshenko, & Drasgow, 2006).

Among various techniques currently available

for assessing ME, those most commonly used are

based on either item response theory (IRT) or

confirmatory factor analysis (CFA), a special case

of structural equation modeling (SEM) (Teresi,

2006). Although the concept of item-level

measurement (non)equivalence (i.e., differential

item functioning; DIF) was originated in the

1 The terms test and scale are used synonymously in

this article.

IRT literature (Camilli & Shepard, 1994), recent

demonstrations regarding the link between IRT

and CFA allow researchers to address the

problems of DIF within the CFA framework (see

Kamata & Bauer, 2008; MacIntosh & Hashim,

2003; Muthén, Kao, & Burstein, 1991). The

CFA-based DIF analysis employs either mean

and covariance structure model (MACS; Sörbom,

1974) or multiple causes multiple indicators

model (MIMIC; Jöreskog & Goldberger, 1975).

Using the MIMIC technique, for example,

researchers have successfully detected DIF in

questionnaires of mental health (e.g., Jones,

2006; Woods, Oltmanns, & Turkheimer, 2009).

Moreover, a few simulation studies have

supported the utility of this methodfor instance,

it provides reasonable control for Type I error

and adequate power, unless smaller group size is

less than 100 (Woods, 2009a); three-parameter

logistic IRT model underlies the responses on a

short scale (Finch, 2005); or the number of DIF

items are too large relative to the number of

items in a scale (Finch, 2005; Navas-Ara &

Gómez-Benito, 2002). The present study also

focuses on evaluating the accuracy of the

MIMIC DIF analysis under various conditions,

especially with regard to its implementation

strategy.

Although previous simulation studies have

provided some valuable insights and practical

implications, there are some analytic issues that

may arise when researchers conduct the MIMIC

DIF analysis (see Lee, 2009). Also, it is
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premature to strongly advocate a particular

procedure because there have been little or no

direct comparisons of different application

strategies2. Accordingly, this article presents a

simulation study that compares two common

testing approaches and an alternative approach in

terms of efficiency. The latter approach has been

designed as a potential solution for arbitrarily

choosing an unbiased anchor set. This study also

examined the use of different test statistics,

along with other factors known to impact the

efficiency of the MIMIC DIF analysis. The

organization of this article is as follows. The

next sections demonstrate the MIMIC models

and discuss some methodological issues in the

context of DIF analysis. A Monte Carlo study

and simulation results are presented in the

following sections. In the final section, the

author discusses study findings and implications

as well as limitations and directions for future

research. The present study would contribute to

the literature by cautioning researchers and

practitioners against the use of an innocuously

chosen analytic strategy when conducting the

MIMIC DIF analysis.

MIMIC Terminology and Specification

To illustrate the MIMIC models, this section

2 In fact, different analytic strategies including testing

approach, test statistic, and scaling method have been

empirically compared in case of the MACS DIF

analysis (e.g., Start et al., 2006; Lee, 2009).

starts with the MACS model. In case of a single

latent trait, the MACS model can be written as


   , (1)

where 
 is the latent item responses (i = 1,

…, p) (when 
  , an observed item

response    ;  is the item threshold), 

is the item intercepts,  is the item loadings,

 is the latent trait, and  is the unique

factor scores that are assumed to have a normal

distribution. The MIMIC model is a simple

extension of the MACS modelit incorporates the

impacts of (observed) covariates on the trait

(Jöreskog & Goldberger, 1975; standard MIMIC

model, hereafter). Muthén and colleagues further

extended the standard MIMIC model such that

the covariates also influence the responses (Gallo,

Anthony, & Muthén, 1994; Muthén, 1988;

MIMIC-DIF model, hereafter). The MIMIC-DIF

model can be written as


  

  



, (2)

where  is the covariates (j = 1, …, q) and

 is the regression coefficients that correspond

to the impacts of the covariates on the

responses. The trait score  can be obtained by

   , (3)
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where x is a q × 1 vector of the covariates, 

is an 1 × q vector of the regression coefficients

 that correspond to the impacts of the

covariates on the trait, and  is a scalar of the

disturbance that is assumed to have a

multivariate normal distribution with mean of 0

and variance . The two error terms  and 

are assumed to be independent of each other

and  .

The regression coefficients  are termed

indirect effects as they represent the impacts on

the responses through the trait (× ). Given

a grouping covariate, the indirect effects account

for group differences in trait mean. The

regression coefficients  are termed direct effects

as they represent the influences on the responses,

unmediated by the trait (Dorans & Holland,

1993; Jones, 2006). The direct effects capture

group differences in responses after controlling

for the differences in trait mean across groups,

which is the definition of DIF (Fleishman,

2005). Thus, an item is considered as having

DIF when a corresponding direct effect is

statistically significant (Jones, 2006).

As observed in Equation 2, the MIMIC

models presume identical trait variances and,

more importantly, equal loadings across groups.

Consequently, an apparent limitation of the

MIMIC technique is that there is no test for

non-uniform DIF. However, Woods and Grimm

(2011) recently demonstrated the use of MIMIC

models for testing both uniform and

non-uniform DIF with categorical covariates.

They expanded the MIMIC-DIF model by

incorporating latent interactions between a latent

trait and categorical covariates to identify

non-uniform DIF items in a scale. Because the

MIMIC method for detecting non-uniform DIF

is beyond the scope of the present study, the

Woods and Grimm ’s model is not discussed in

this article.

Some Analytic Issues

This section discusses some methodological

issues that may arise when researchers conduct

the MIMIC DIF analysis. The related testing

approaches and test statistics are examined in

the current simulation study.

Scaling

In any CFA model, the scale for a latent

construct (trait) needs to be identified to obtain

a unique solution for every parameter (Bollen,

1989). In a simple MACS model, given three or

more items3, scaling is often achieved by fixing

one of the loadings and a corresponding

intercept (e.g., to 1 and 0, respectively)

(marker-variable method); fixing the latent

variance and mean (e.g., to 1 and 0,

respectively) (fixed-factor method); or constraining

3 Fewer than three items per trait would result in an

under-identification problem, increasing likelihood of

obtaining an infeasible solution (Bollen, 1989). Thus,

discussions focus on the cases of three or more items

for each trait.
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the loadings and intercepts to average particular

values (e.g., to 1 and 0, respectively) (effects-coded

method) (Little, Slegers, & Card, 2006). The

same scaling methods are used to set the scale

of a trait defined in the MIMIC model (scaling

part i). Since the MIMIC models involve

estimating indirect and direct effects, scaling also

should take into account these additional

parameters (scaling part ii). This latter part of

scaling can be done by further fixing the direct

effects for a set of items (at least one item;

anchor) to 0 (e.g., Finch, 2005); or imposing a

constraint on the direct effects. Although any

combinations of the scaling methods between the

scaling parts i and ii are simple

reparameterizations of one another and, as a

result, they provide identical model fit i.e., by

no means change the DIF test results, the

scaling part ii is closely related to the choice of

an anchor set and testing approach.

Biased Anchor Set

Fixing the direct effects for a set of anchor

items is essentially the same as assuming that

the anchor set is truly free from DIF. However,

if an anchor set is contaminated by DIF, the

direct effects for other (non-anchor) items may

be erroneously estimated (Cheung & Rensvold,

1999; Millsap, 2005). Indeed, both Finch (2005)

and Navas-Ara and Gómez-Benito (2002)

showed that the accuracy of the MIMIC DIF

analysis is adversely influenced by the presence

of DIF in an anchor set. To rule out this

possibility, various empirical solutions have been

proposed in the literature (e.g., Fleishman,

Spector, & Altman, 2002; Christensen,

MacKinnon, Korten, & Jorm, 2001; Mackinnon,

Jorm, Christensen, Korten, Jacomb, & Rodgers,

1999, Woods, 2009b). Although such solutions

could provide an unbiased anchor set much of

the time, they increase necessarily the number of

nested-model comparisons, which inflates Type I

error and more severely if no item appears to

be DIF-free; or involve the risk of capitalizing

on chance by the use of data-driven modification

index (MI).

Testing Approach

Two testing approaches are often used for the

MIMIC DIF analysis. First, forward-inclusion

approach tests DIF one item at a time,

assuming that all other items in the scale are

DIF-free anchor items (e.g., Christensen et al.,

1999; Finch, 2005; Muthén & Asparouhov,

2002). This approach starts with a baseline

model where no direct effects have been

specified (i.e., standard MIMIC model). Once the

baseline model is fitted to the data, model fit is

compared against each of p nested models

(where p = number of items in the scale),

where a direct effect is added or freely estimated

for only one item at a time (see Figure 1A). An

item is considered as having DIF if the inclusion

of a corresponding direct effect improves model

fit significantly.

Second, backward-elimination approach tests DIF
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one item at a time, assuming that, unlike the

forward-inclusion approach, all other items are

not necessarily free from DIF (e.g., Fleishman et

al., 2002; Woods, 2009a; Woods, Oltmanns, &

Turkheimer, 2008). Accordingly, the baseline

model includes all possible direct effects, except

for an anchor set (at least one item) needed for

scale setting. The fit of this baseline model is

compared against each of the nested models,

where the direct effect for an item being tested

(target item) is eliminated or fixed to 0 (see

Figure 1B). Uniform DIF is indicative if

eliminating a direct effect worsens model fit

significantly.

By employing the effects-coding schema, a

variant form of the backward-elimination

approach can be constructed. This alternative

approach, named effects-coded backward-elimination,

constrains all possible direct effects to average 0

in the baseline model, assuming that all items

in the scale are not necessarily DIF-free. It can

be written as


  



   for each of the covariates ,

(7)

where i = 1 to p refers to summation across

the set of p unique items for a given latent

trait. The baseline model fit is compared against

each of the nested models, where the direct

effect for a target item is fixed to 0 but the

A. Forward-Inclusion B. Backward-Elimination C. Effects-Coded Backward-Elimination

Figure 1. MIMIC Baseline and Constrained/Augmented Models

Note. For simplicity, these models include only three items and a single covariate and the unique factor variances are

omitted in this figure. The marker-variable method is chosen for the scaling part i.



Jaehoon Lee / COMPARISONS OF MIMIC DIF STRATEGIES

- 1089 -

constraint still holds for other items in the scale

(see Figure 1C).

These three different testing approaches would

likely to yield different results of DIF analysis

because this post-hoc analysis relies on the

examination of individual parameters. More

important, from statistical standpoint, the

forward-inclusion approach is not theoretically

suitable. In the likely cases where a scale

includes one or more DIF items, the baseline

model for the forward-inclusion approach

(standard MIMIC model) may not fit adequately

because this model assumes no DIF in the scale

(Stark et al., 2006; see Maydeu-Olivares & Cai,

2006). In the present Monte Carlo study,

therefore, the backward-elimination and

effects-coded backward-elimination approaches are

expected to outperform the forward-inclusion

approach under ideal conditions (i.e., unbiased

anchor set). However, when the anchor set is

contaminated by DIF (e.g., a single DIF anchor

item or one DIF item in the anchor set,

depending on the testing approach used), the

effects-coded backward-elimination approach is

anticipated to outperform the backward-

elimination approach. This is because the DIF

contamination rate in the anchor set is always

lower in the former approach than in the latter

approach, given the same scale.

Test Statistics

As described earlier, statistical significance of a

direct effect, or equivalently uniform DIF, is

determined by assessing change in model fit

between two nested models4. Log-likelihood or

chi-square goodness-of-fit difference (likelihood

ratio [LR] statistic) is the most frequently used

test statistic. Although LR statistic has a

problem of inherent dependency on sample size

(Brannick, 1995), Stark et al. (2006) showed

that the use of Bonferroni-corrected LR test

substantially decreased Type I error of the

(MACS) DIF analysis in some cases (e.g., large

sample, large DIF). Lee (2009) also found that

Bonferroni correction can almost eliminate Type

I error in cases of comparable large groups,

regardless of item type, DIF type, and test

length.

Other recent studies have provided empirical

sampling distributions for some key fit measures

in regard to DIF analysis at the scale level. For

example, a change in comparative fit index (CFI)

by 0.01 (Cheung & Rensvold, 2002) or 0.002

(Meade, Johnson, & Braddy, 2008) and a 0.005

change in standardized root mean square residual

(SRMR) (Chen, 2007) have been suggested as

optimal criteria 5. However, there is no such

4 Some previous studies have used the Wald test results

from fitting only a single MIMIC-DIF model (i.e., no

model fit comparison). However, Wald statistic is not

a stable measure for statistical significance (Brown,

2006). For example, when different but statistically

equivalent scaling methods are used, they can provide

different standard errors and consequently different

Walt statistics (see Gonz ález & Griffin, 2001).

5 Information-theoretic fit measures (e.g., Akaike

information criterion, Bayesian information criterion)

are also suitable for evaluating scale-level DIF, but
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standard proven useful in case of testing DIF at

the item level. Thus, the current simulation

study examines the use of these scale-level global

fit criteria. It is expected that the suggested

criterion values, △CFI of 0.01 and 0.002 and

△SRMR of 0.005, are too stringent and thus

will provide biased, unreasonable conclusions

about DIF.

As is evident from the discussions above,

there are at least two important differences in

implementing the MIMIC DIF analysis: testing

approach (forward-inclusion, backward-elimination,

effects-coded backward-elimination) and test

statistics (LR, Bonferroni-corrected LR, △CFI, △

SRMR). Accordingly, the primary goal of this

investigation was to compare the performance of

the MIMIC (uniform) DIF analysis for different

analytic strategies via a Monte Carlo simulation

described below.

Method

Condition Factors

Condition factors included those that have

been commonly examined in the DIF

literatureitem type, test length, sample size,

impact (true difference in latent trait mean),

DIF type and DIF size in a target item, and

DIF type and DIF size in an anchor set.

Considering usual practice in DIF studies, a

their effectiveness has not been supported in the

literature beyond the fit measures discussed here.

dummy-coded group variable (i.e., focal versus

reference) was used as a single covariate.

Item Type. Item responses were either

dichotomous or ordinal (5-point Likert scale).

They were conceptualized as observed categorical

responses y, wherein underlying responses  are

completely latent and continuous (Mellenbergh,

1994). As a normally distributed latent response

exceeded certain threshold value(s), the observed

response took higher score(s). In other words,

examinees who chose a particular category had

more of characteristic of the trait than others

who chose a lower category.

Test Length. The test consisted of six or 12

items. The second item (Item 2) always served

as the target item. Other items in the test

served as an anchor set (i.e., all the remaining

items under the forward-inclusion or effects-coded

backward-elimination approach; the first item [a

single anchor item; Item 1] under the

backward-elimination approach). When DIF was

simulated, it appeared only on Item 1, only on

Item 2, or both. Consequently, the rate of DIF

contamination ranged from 0 to 33%.

Sample Size. Three combinations of sample

sizes were constructed; focal group  = (a)

100, (b) 250, or (c) 500 and reference group

 = (a) 900, (b) 750, or (c) 500, respectively.

Total sample size was always
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   , so as to not confound

differences in sample size with total sample size.

Impact. When there was no impact, the latent

trait followed a standard normal distribution

(∼  ) in each group. When a moderate

impact was present, the trait means differed by

1 standard deviation so that the focal group had

a smaller trait mean (∼   ) compared

to the reference group.

DIF Type. DIF can be either uniform or

non-uniform depending on the item parameter

that differs across groups. Uniform DIF is

present when the item intercept(s) differs across

groups; non-uniform DIF exists when the item

loading differs across groups, regardless of the

invariance of the item intercept(s). In the present

study, uniform DIF was created by varying an

item’s threshold(s) between two groupsthe

threshold(s) for the focal group was raised by

0.8 (large DIF), making uniform DIF items

more difficult (less attractive) for this group

compared to the reference group. For ordinal

responses, all four thresholds were shifted by the

same amount, which is analogous to varying all

the location parameters in the graded response

model (GRM; Samejima, 1969). Non-uniform

DIF was created by varying an item’s loading

between two groupsthe loading for the focal

group was reduced by 0.4 (large DIF) so that

non-uniform DIF items were less discriminative

for this group. It should be noted that

non-uniform DIF also could be simulated by

varying “both” an item’s loading and

threshold(s) but only the loading parameter was

manipulated so as to isolate the effects of

varying the threshold(s) and/or loading from each

other, the two primary sources of DIF.

Data Generation

Both dichotomous and ordinal responses were

generated as follows. First, population parameter

values were specified such that the same factor

structure underlay each of two groups. To isolate

the effects of varying item difficulty and/or

latent trait distribution from each other6, single

common factor model was applied for data

generation. This model can be written as


  , (8)

where  is the loadings on the unique factor

scores  that are assumed to be normally

distributed. The unique factor loadings were

given by  , thereby yielding the item

variances of unity. The item loadings  were

equal between two groups, except for the target

and anchor items. The population parameter

6 An intercept difference does not necessarily indicate an

item mean difference because the item mean is

dependent on both the loading and the latent mean

(Stark et al., 2006; see Equation 3). In other words,

lowering the intercept of an item increases difficulty

of this item when and only when the loading and the

latent mean are equal across groups.
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values used for data generation are shown in

Table 1.

For each group, the trait scores and unique

factor scores sampled from a normal distribution

and the loadings a priori defined were

substituted into Equation 8 to create continuous

responses. Once continuous responses were

generated, they were transformed into discrete

responses under two or five categories. For

dichotomous responses, a threshold parameter

value was chosen according to 50% of the area

under the normal curve if continuous responses

were greater than the threshold   , they

were scored as 1; otherwise, they were scored as

0. For ordinal responses, four threshold values

were chosen with an equal interval according to

approximately 3.6%, 23.8%, 45.1%, 23.8%, and

3.6% of the area under the normal curve.

Dichotomous item Ordinal item

Group Item λ κ β λ κ1 κ2 κ3 κ4 β

Reference 1 0.90 0.00 0.19 0.90 -1.80 -0.60 0.60 1.80 0.19

2 0.80 0.00 0.36 0.80 -1.80 -0.60 0.60 1.80 0.36

3 0.70 0.00 0.51 0.70 -1.80 -0.60 0.60 1.80 0.51

4 0.60 0.00 0.64 0.60 -1.80 -0.60 0.60 1.80 0.64

5 0.50 0.00 0.75 0.50 -1.80 -0.60 0.60 1.80 0.75

6 0.40 0.00 0.84 0.40 -1.80 -0.60 0.60 1.80 0.84

7 0.85 0.00 0.28 0.85 -1.80 -0.60 0.60 1.80 0.28

8 0.75 0.00 0.44 0.75 -1.80 -0.60 0.60 1.80 0.44

9 0.65 0.00 0.58 0.65 -1.80 -0.60 0.60 1.80 0.58

10 0.55 0.00 0.70 0.55 -1.80 -0.60 0.60 1.80 0.70

11 0.45 0.00 0.80 0.45 -1.80 -0.60 0.60 1.80 0.80

12 0.35 0.00 0.88 0.35 -1.80 -0.60 0.60 1.80 0.88

Focal

Non-uniform DIF 1 0.50 0.00 0.75 0.50 -1.80 -0.60 0.60 1.80 0.75

2 0.40 0.00 0.84 0.40 -1.80 -0.60 0.60 1.80 0.84

Uniform DIF 1 0.90 0.80 0.19 0.90 -1.00 0.02 1.40 2.60 0.19

2 0.80 0.80 0.36 0.80 -1.00 0.02 1.40 2.60 0.36

Note. Items 1 and 2 were used as an anchor item and a target item, respectively. The parameter values for other

items are not shown in the focal group because they were equal to those in the reference group.

Table 1. Population Item Parameters
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Ordinal responses were assigned as such   

if 
 ≤ ;    if    

 ≤;

   if    
 ≤ ;    if

  
 ≤  ; and   if 

  .

Analysis

The MIMIC DIF analysis was conducted using

Mplus 6.0 (Muthén & Muthén, 1998–2010). In

each of 500 replications, a baseline model and a

constrained or augmented model, constructed as

described earlier, were successively fitted to the

generated data. The null hypothesis of no DIF

was tested by using each of three testing

approaches (forward-inclusion, backward-elimination,

effects-coded backward-elimination). The Mplus

syntax examples used to specify the MIMIC

models appear in the appendix.

Six test statistics including uncorrected LR and

corrected LR (Bonferroni-corrected   ,

where n is the number of possible DIF tests

within the scale; Stark et al., 2006), △CFI of

0.01 and 0.002, and △SRMR of 0.005 were

calculated within each nested-model comparison.

Outcome variables of interest were false positive

(FP) rate and true positive (TP) rate. The FP

rate was computed as the proportion of times

that the unbiased target item was erroneously

identified as having DIF (i.e., reject true null

hypothesis) out of 500 replications of each

condition. Similarly, the TP rate was calculated

as the proportion of times that DIF was

correctly detected in the biased target item (i.e.,

reject false null hypothesis).

Using SAS 9.2 (SAS Institute, 2002–2008),

variance components analysis was also conducted

to assess the relative influences of the condition

factors and application strategies on the study

outcomes. All the effects, except for an intercept,

were treated as random via minimum variance

quadratic unbiased estimation (MIVQUE).

Results

When impact was present such that the

latent trait means differed by 1 standard

deviation between the focal and reference groups,

the false positive (FP) rates based on the LR

statistic (either uncorrected or corrected) were

severely inflated and the true positive (TP) rates

were artificially high in nearly all simulated

conditions, regardless of testing approach used in

combination (forward-inclusion, backward-elimination,

or effects-coded backward-elimination). For the

△CFI or △SRMR, the TP rates were around 0

in nearly all conditions. Therefore, following

discussions about simulation results are focused

on the cases where the trait means were equal

between two groups (i.e., no impact). As noted

previously, the MIMIC method is not suitable

for detecting non-uniform DIF because the

models assume equal loadings across groups.

Supporting this limiting assumption, the TP

rates for detecting non-uniform DIF were either

very low or spuriously raised in all study
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conditions. Thus, discussions are further limited

to the cases where, if present, only uniform DIF

appeared in the target item. More complete

results will be available to interested readers by

request.

False Positive Rate

Table 2 presents the FP rates, by all

combinations of the conditions factors, separately

for different testing approaches and test statistics.

In the favorable cases of unbiased anchor set,

each of the three testing approaches provided

reasonable control for the FP rate. For the

backward-elimination approach, the FP rates

were equal to 0 in all conditions, regardless of

test statistic used together. The effects-coded

backward-elimination approach produced the rates

below the nominal alpha value (.006 – .050)

with uncorrected LR; and less than .006 with

other test statistics. Similar results were observed

for the forward-inclusion approach, except for a

few conditionsslightly elevated FP rates for the

binary responses from the groups of greater than

100 examinees (.086 – .124).

The presence of large uniform DIF in the

anchor set (i.e., a single DIF anchor item or one

DIF item in the anchor set) severely inflated the

FP rates, especially when the backward-

elimination approach was utilized, as expected.

For example, the rates easily approached 1 in

almost all conditions when this approach was

used with (either uncorrected or corrected) LR or

△CFI of 0.002. In contrast, even when the

anchor set was biased by uniform DIF, the

effects-coded backward-elimination approach still

maintained reasonable control for the FP rate in

some cases. When the scale consisted of 12

items, this approach provided the rates less than

.014 with corrected LR, △CFI, or △SRMR;

and those ranged from .002 to .206 (median <

.10) with uncorrected LR. For the

forward-inclusion approach, the FP rates were

always below the nominal alpha value except for

a few conditions (e.g., .056– .098 for

uncorrected LR), regardless of test statistic.

Nevertheless, this overall reduction in the FP

rate had little practical implications when

considering very low TP rates in general (see

True Positive Rate section below).

Generally, a biased, non-uniform DIF anchor

set did not inflate the FP rates of the MIMIC

(uniform) DIF analysis. Unless uncorrected LR

was utilized in combination, each of the three

testing approaches controlled the FP rates at the

nominal alpha level. Even with the uncorrected

LR, the backward-elimination approach provided

the rates less than .032; the effects-coded

backward-elimination less than .098; and the

forward-inclusion approach less than .134. This

finding was not surprising because the performance

of testing uniform DIF may be influenced

negligibly by having different type of bias in the

anchor set (i.e., non-uniform DIF) and less

influenced by having the same type of bias in

this set (i.e., uniform DIF) (see Lee, 2009).
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Forward-inclusion

Item type Test length Sample size
DIF in

anchor set
Uncor.LR Cor. LR

△CFI

0.01

△CFI

0.002

△SRMR

0.005

Binary 6 items 100/900 No DIF 0.008 0.002 0.000 0.000 0.000

Non-uniform 0.010 0.002 0.000 0.000 0.000

Uniform 0.018 0.002 0.000 0.000 0.000

250/750 No DIF 0.100 0.016 0.000 0.000 0.000

Non-uniform 0.134 0.018 0.000 0.000 0.000

Uniform 0.050 0.006 0.000 0.000 0.000

500/500 No DIF 0.086 0.014 0.000 0.000 0.000

Non-uniform 0.106 0.016 0.000 0.000 0.000

Uniform 0.036 0.002 0.000 0.000 0.000

12 items 100/900 No DIF 0.008 0.002 0.000 0.000 0.000

Non-uniform 0.008 0.002 0.000 0.000 0.001

Uniform 0.010 0.002 0.000 0.000 0.000

250/750 No DIF 0.124 0.006 0.000 0.000 0.000

Non-uniform 0.134 0.010 0.000 0.000 0.000

Uniform 0.098 0.006 0.000 0.000 0.000

500/500 No DIF 0.110 0.004 0.000 0.000 0.000

Non-uniform 0.116 0.004 0.000 0.000 0.000

Uniform 0.070 0.000 0.000 0.000 0.000

Ordinal 6 items 100/900 No DIF 0.018 0.002 0.000 0.000 0.000

Non-uniform 0.024 0.004 0.000 0.000 0.000

Uniform 0.056 0.004 0.000 0.000 0.000

250/750 No DIF 0.052 0.002 0.000 0.000 0.000

Non-uniform 0.058 0.004 0.000 0.000 0.000

Uniform 0.022 0.000 0.000 0.000 0.000

500/500 No DIF 0.060 0.000 0.000 0.000 0.000

Non-uniform 0.062 0.000 0.000 0.000 0.000

Uniform 0.002 0.002 0.000 0.000 0.000

12 items 100/900 No DIF 0.006 0.000 0.000 0.000 0.000

Non-uniform 0.006 0.000 0.000 0.000 0.000

Uniform 0.024 0.002 0.000 0.000 0.000

250/750 No DIF 0.048 0.002 0.000 0.000 0.000

Non-uniform 0.058 0.002 0.000 0.000 0.000

Uniform 0.024 0.000 0.000 0.000 0.000

500/500 No DIF 0.048 0.000 0.000 0.000 0.000

Non-uniform 0.044 0.000 0.000 0.000 0.000

Uniform 0.020 0.000 0.000 0.000 0.000

Table 2. False Positive Rates
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Backward-elimination Effects-coded backward-elimination

Uncor.LR Cor. LR
△CFI

0.01

△CFI

0.002

△SRMR

0.005
Uncor.LR Cor. LR

△CFI

0.01

△CFI

0.002

△SRMR

0.005

0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000

0.010 0.000 0.000 0.000 0.000 0.022 0.002 0.000 0.000 0.000

1.000 1.000 0.004 1.000 0.102 0.392 0.092 0.000 0.002 0.000

0.000 0.000 0.000 0.000 0.000 0.049 0.002 0.000 0.000 0.000

0.032 0.012 0.000 0.000 0.000 0.122 0.008 0.000 0.000 0.000

1.000 1.000 0.700 1.000 0.976 0.214 0.014 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.000 0.000 0.000

0.032 0.008 0.000 0.000 0.000 0.098 0.002 0.000 0.000 0.000

1.000 1.000 1.000 1.000 1.000 0.400 0.074 0.000 0.002 0.000

0.000 0.000 0.000 0.000 0.000 0.006 0.002 0.000 0.000 0.000

0.006 0.000 0.000 0.000 0.000 0.011 0.003 0.000 0.000 0.000

1.000 1.000 0.000 0.288 0.000 0.044 0.002 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.050 0.002 0.000 0.000 0.000

0.024 0.002 0.000 0.000 0.000 0.076 0.004 0.000 0.000 0.000

1.000 1.000 0.000 0.994 0.000 0.002 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.046 0.000 0.000 0.000 0.000

0.028 0.000 0.000 0.000 0.000 0.056 0.000 0.000 0.000 0.000

1.000 1.000 0.000 1.000 0.008 0.006 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000

0.024 0.004 0.000 0.000 0.000 0.040 0.002 0.000 0.000 0.000

1.000 1.000 0.302 1.000 0.974 0.828 0.438 0.000 0.020 0.000

0.000 0.000 0.000 0.000 0.000 0.026 0.002 0.000 0.000 0.000

0.030 0.004 0.000 0.000 0.000 0.072 0.002 0.000 0.000 0.000

1.000 1.000 1.000 1.000 1.000 0.968 0.748 0.000 0.104 N.A.

0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.000

0.018 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.000 0.000

1.000 1.000 1.000 1.000 1.000 0.998 0.926 0.000 0.288 N.A.

0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000

0.018 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000

1.000 1.000 0.000 0.992 0.000 0.174 0.014 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000

0.024 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000

1.000 1.000 0.000 1.000 0.118 0.136 0.010 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000

0.018 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000

1.000 1.000 0.022 1.000 0.996 0.206 0.008 0.000 0.000 0.000

Table 2. False Positive Rates (Continue)
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The results of variance components analysis

were similar across the five different test statistic

values, which were independently used to derive

the FP rates. That is, the most influential factor

was commonly the two-way interaction, testing

approach × DIF in an anchor set (no, uniform,

non-uniform), for uncorrected LR (MIVQUE =

0.077), corrected LR (0.090), and △CFI of

0.002 (0.095). This two way interaction ×

testing length (three-way interaction) contributed

the most to the FP variance when the △CFI of

0.01 (0.020) or △SRMR of 0.005 (0.027) was

used as a test statistic.

True Positive Rate

On average, the TP rate for testing (large)

uniform DIF was highest when DIF was tested

by the use of uncorrected LR (.692), followed

by corrected LR (.527), △CFI of 0.002 (.246),

△SRMR of 0.005 (.078), and △CFI of 0.01

(.040). As we expect, the latter three criteria

suggested as optimal for testing DIF at the

scale level were somewhat stringent for testing

DIF at the item level. However, in general, the

use of Bonferroni correction did not reduce the

TP rates substantially.

By using uncorrected LR, average TP rates

were almost equal between dichotomous responses

(.693) and ordinal responses (.692). However, the

average rates were higher when an anchor set

had no DIF (.877) rather than uniform DIF

(.322); and when group sizes were comparably

large (    ; .816) rather than

largely different (     ; .518).

Also, the backward-elimination approach (.701)

provided the highest average TP rate, followed

by the effects-coded backward-elimination

approach (.691) and forward-inclusion approach

(.686).

The TP rates, by all combinations of the

conditions factors, are shown in Table 3. When

an anchor set was free from DIF, the TP rates

for the backward-elimination approach were

equal to or near 1 in all conditions when used

with (either uncorrected or corrected) LR. The

effects-coded backward-elimination approach

provided acceptable TP rates with corrected LR

unless group sizes differed largely (.724 – 1);

or with uncorrected LR unless group sizes

differed largely under 12-item scale conditions

(.836 – 1). With uncorrected LR, the

forward-inclusion approach also provided the TP

rates greater than .80 unless groups differed

greatly in size (.834 – .946). However, given

the inflated FP rates observed earlier for this

approach, this finding needs to be interpreted

with caution. Regardless of testing approach, in

general, the TP rates were very low when △

CFI or △SRMR was used as a test statistic.

Some exceptions occurred when the

backward-elimination approach was chosenfor

example, when △CFI of 0.002 was used with

ordinal responses (.0804 – 1).

The presence of uniform DIF in an anchor

set severely degraded the TP rates of the

MIMIC (uniform) DIF analysis. Regardless of
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Forward-inclusion

Item type Test length Sample size
DIF in

anchor set
Uncor.LR Cor. LR

△CFI

0.01

△CFI

0.002

△SRMR

0.005

Binary 6 items 100/900 No DIF 0.454 0.154 0.000 0.024 0.000

Non-uniform 0.450 0.154 0.000 0.032 0.000

Uniform 0.276 0.056 0.000 0.000 0.000

250/750 No DIF 0.834 0.516 0.000 0.269 0.000

Non-uniform 0.844 0.538 0.000 0.424 0.000

Uniform 0.568 0.284 0.000 0.003 0.000

500/500 No DIF 0.946 0.808 0.000 0.716 0.000

Non-uniform 0.956 0.824 0.000 0.836 0.000

Uniform 0.693 0.461 0.000 0.011 0.000

12 items 100/900 No DIF 0.484 0.098 0.000 0.000 0.000

Non-uniform 0.486 0.100 0.000 0.000 0.000

Uniform 0.408 0.064 0.000 0.000 0.000

250/750 No DIF 0.842 0.468 0.000 0.000 0.000

Non-uniform 0.858 0.474 0.000 0.000 0.000

Uniform 0.736 0.360 0.000 0.000 0.000

500/500 No DIF 0.914 0.746 0.000 0.000 0.000

Non-uniform 0.922 0.754 0.000 0.000 0.000

Uniform 0.856 0.596 0.000 0.000 0.000

Ordinal 6 items 100/900 No DIF 0.384 0.164 0.000 0.102 0.000

Non-uniform 0.388 0.176 0.000 0.104 0.000

Uniform 0.190 0.050 0.000 0.000 0.000

250/750 No DIF 0.890 0.642 0.000 0.792 0.000

Non-uniform 0.906 0.706 0.000 0.874 0.000

Uniform 0.514 0.270 0.000 0.000 0.000

500/500 No DIF 0.968 0.844 0.000 0.980 0.000

Non-uniform 0.978 0.920 0.000 0.994 0.000

Uniform 0.712 0.416 0.000 0.000 0.000

12 items 100/900 No DIF 0.350 0.092 0.000 0.000 0.000

Non-uniform 0.352 0.092 0.000 0.000 0.000

Uniform 0.260 0.058 0.000 0.000 0.000

250/750 No DIF 0.856 0.524 0.000 0.000 0.000

Non-uniform 0.868 0.546 0.000 0.000 0.000

Uniform 0.722 0.348 0.000 0.000 0.000

500/500 No DIF 0.968 0.740 0.000 0.000 0.000

Non-uniform 0.976 0.804 0.000 0.000 0.000

Uniform 0.880 0.548 0.000 0.000 0.000

Table 3. True Positive Rates
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Backward-elimination Effects-coded backward-elimination

Uncor.LR Cor. LR
△CFI

0.01

△CFI

0.002

△SRMR

0.005
Uncor.LR Cor. LR

△CFI

0.01

△CFI

0.002

△SRMR

0.005

1.000 1.000 0.000 0.982 0.002 0.836 0.412 0.000 0.002 0.000

1.000 0.998 0.000 0.930 0.006 0.826 0.412 0.000 0.002 0.000

0.020 0.000 0.000 0.000 0.000 0.054 0.002 0.000 0.000 0.000

1.000 1.000 0.000 1.000 0.022 0.981 0.817 0.000 0.057 0.000

1.000 1.000 0.036 1.000 0.394 0.990 0.902 0.000 0.069 0.000

0.127 0.006 0.000 0.000 0.000 0.210 0.026 0.000 0.016 0.000

1.000 1.000 0.000 1.000 0.550 1.000 0.978 0.000 0.225 0.000

1.000 1.000 0.158 1.000 0.930 1.000 0.990 0.000 0.255 0.000

0.243 0.038 0.000 0.000 0.000 0.365 0.068 0.000 0.050 0.000

1.000 1.000 0.000 0.010 0.001 0.514 0.084 0.000 0.000 0.000

0.998 0.996 0.000 0.034 0.002 0.514 0.076 0.000 0.000 0.000

0.020 0.000 0.000 0.000 0.000 0.118 0.004 0.000 0.000 0.000

1.000 1.000 0.000 0.054 0.000 0.860 0.460 0.000 0.000 0.000

1.000 1.000 0.000 0.456 0.000 0.890 0.508 0.000 0.000 0.000

0.154 0.002 0.000 0.000 0.000 0.404 0.082 0.000 0.000 0.000

0.998 0.998 0.000 0.378 0.002 0.938 0.766 0.000 0.002 0.000

1.000 1.000 0.000 0.862 0.000 0.956 0.816 0.000 0.002 0.000

0.268 0.012 0.000 0.000 0.000 0.604 0.228 0.000 0.002 0.000

1.000 1.000 0.054 1.000 0.898 0.954 0.724 0.000 0.003 0.000

1.000 1.000 0.096 1.000 0.858 0.938 0.684 0.000 0.003 0.000

0.004 0.000 0.000 0.000 0.000 0.058 0.004 0.000 0.000 0.000

1.000 1.000 0.996 1.000 1.000 1.000 0.998 0.000 0.037 0.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.047 0.000

0.052 0.000 0.000 0.000 0.000 0.228 0.026 0.000 0.000 0.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.120 0.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.192 0.000

0.122 0.008 0.000 0.000 0.000 0.330 0.066 0.000 0.006 0.000

1.000 1.000 0.000 0.846 0.000 0.614 0.192 0.000 0.000 0.000

1.000 1.000 0.000 0.804 0.000 0.586 0.190 0.000 0.000 0.000

0.004 0.000 0.000 0.000 0.000 0.098 0.004 0.000 0.000 0.000

1.000 1.000 0.000 1.000 0.000 0.970 0.810 0.000 0.000 0.000

1.000 1.000 0.000 1.000 0.006 0.978 0.846 0.000 0.000 0.000

0.056 0.000 0.000 0.000 0.000 0.444 0.084 0.000 0.000 0.000

1.000 1.000 0.000 1.000 0.006 1.000 0.962 0.000 0.000 0.000

1.000 1.000 0.004 1.000 0.762 1.000 0.980 0.000 0.000 0.000

0.154 0.000 0.000 0.000 0.000 0.622 0.212 0.000 0.000 0.000

Table 3. True Positive Rates (Continue)
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testing approach and test statistics, the TP rates

were always less than .80 with only a few

exceptions. Generally, a biased, non-uniform DIF

anchor set did not decrease the TP ratesthe

rates were, in fact, similar to those observed

when the anchor set was DIF-free.

Based on the variance components analysis

results, DIF in the anchor set accounted for the

greatest TP variance when uncorrected

(MIVQUE = 0.087) or corrected LR (0.103)

was used as a test statistic. The testing

approach was included in the most influential

interactions for the △CFI of 0.01 (testing

approach × item type × test length; 0.020) or

0.01 (testing approach × DIF in an anchor set;

0.052) and △SRMR of 0.005 (testing approach

× test length; 0.016).

Discussion

Given that the MIMIC DIF analysis has

enjoyed increasing attention in the DIF

literature, the purpose of the present study was

to evaluate the accuracy of this technique by

means of Monte Carlo simulation. Specifically,

different testing approaches and test statistics

were compared in regard to false positive (FP)

and true positive (TP) rates, across various

conditions of different item type, test length,

sample size, impact, and DIF type and DIF size

in a target item and an anchor set. This study

proposed and empirically tested a new testing

approach (effects-coded backward-elimination) as

a potential solution for arbitrary choosing a

DIF-free anchor set.

It should be noted that the two primary

outcome variables, FP and TP statistics, are

closely tied to each other for instance, lowering

an alpha level for a test (e.g., through the use

of Bonferroni correction or scale-level global fit

criteria) generally reduces “both” the FP and TP

rates of the test. Besides, in cases where the FP

rate is inflated, the standard definition of the

TP rate at the nominal alpha level (i.e., power)

is not meaningful (Finch, 2005). Thus, any

conclusion about performance should not be

made solely based on one outcome. Combining

the FP and TP outcomes together, the following

section discusses the study findings and

implications.

Summary of Important Findings and Implications

The current simulation results appear to

support the utility of the MIMIC DIF analysis

in some circumstances but not in others. As

expected, this technique was not suitable for

testing non-uniform DIFin all simulated

conditions, the TP rates were either very low or

spuriously raised due to inflated Type I error.

When impact was present between two groups

(i.e., groups truly differ in their levels of latent

trait), not only the FP rates were severely

inflated but also the TP rates were not

acceptable when testing (large) uniform DIF (see

González-Romá, Hernández, & Gómez-Benito,
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20067), regardless of testing approach and test

statistic used in any combination. Thus, unequal

trait means should be concerned when using the

MIMIC technique, of which models specify

common factor parameters and common item

parameters across groups. Indeed, Cheung and

Rensvold (1999) noted that if trait parameters

are constrained across groups when they are not

actually equal, biased conclusions of measurement

equivalence can occur.

It was also found that, not surprisingly, the

global fit criteria known as optimal for testing

scale-level DIF (△CFI of 0.01 or 0.002, △

SRMR of 0.005) are fairly strict for the

item-level DIF tests, decreasing both the FP and

TP rates in most conditions. In contrast,

although the use of Bonferroni correction (on the

LR statistic) did reduce the FP rates, it

maintained acceptable TP rates in some

conditionse.g., either the backward-elimination

or effects-coded backward-elimination approach

was used along with an unbiased anchor set.

Thus, Bonferroni correction would be desired

when one conducts the CFA-based DIF analysis

(Start et al., 2006)

More important, it appeared that different

testing approaches yield different outcomes.

When an anchor set was truly unbiased, as

expected, both the backward-elimination approach

and the effects-coded backward-elimination

approach outperformed the forward-inclusion

7 Under the same condition, MACS DIF analysis

controls Type I error only when group sizes are equal.

approach in regard to both the FP and TP

rates. More interestingly, when an anchor set

was biased by large uniform DIF, only the

effects-coded backward-elimination approach

performed effectively in some conditions.

Specifically, the FP rates for this approach were

controlled at the nominal alpha level (with

corrected LR) or slightly inflated (with

uncorrected LR) as the DIF contamination rate

decreased (i.e., more [DIF-free] items in the

scale). However, the TP rates were not

satisfactory in these conditions (medians of .424

and .083 for uncorrected LR and corrected LR,

respectively). These findings were supported by

the subsequent variance component analyses  

testing approach and/or DIF in an anchor set

were commonly in the factors that contributed

the most to the FP and TP variances.

Taken together, the findings from this Monte

Carlo study might suggest a possibility that

ameliorates the problems of biased anchor set,

which are repeatedly alerted in the DIF

literature (see Cheung & Rensvold, 1999; Finch,

2005; Millsap, 2005; Navas-Ara & Gómez-

Benito, 2002). That is, even with a biased

anchor set (by either uniform or non-uniform

DIF), the effects-coded backward-elimination

(uniform) DIF test of Bonferroni-corrected LR is

expected to eliminate the chances of FP under

many conditions, while not substantially reducing

the PT rates if used with a relatively large scale

and equally large groups (e.g., 500 examinees

each) in combination8. This proposed analytic
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strategy is appealing in theoretical as well as

practical standpoints in a number of reasons(a)

any particular direct effect is not necessarily

fixed to set the scale and thus no need for a

priori designated anchor set; (b) the baseline

model provides a proper fit, against which DIF

is examined in the subsequent nested models

(Maydeu-Olivares & Cai, 2006); and (c) unlike

other pervious solutions (e.g., Fleishman et al.,

2002; Christensen et al., 2001; Mackinnon et

al., 1999, Woods, 2009b), it neither necessarily

increases the number of nested-model

comparisons and thus maintains Type I error;

(d) nor involves the risk of capitalizing on

chance. The effects-coded backward-elimination

approach is also desirable in the sense that no

item is absolutely devoid of DIF. As noted

previously, “all” the direct effects in the model

are estimated as an optimal balance. Thus, even

when a designated anchor set is available, it will

provide more accurate conclusions about DIF.

Limitations and Suggestions for Future Research

Although some important findings and

implications could be obtained, this study has

several limitations and suggestions for further

research. First, given that this is a Monte Carlo

8 Previous simulation studies also have shown that, in

general, the performance of the CFA-based DIF

analysis improves with the use of Bonferroni correction

and/or with lower DIF contamination rates (e.g.,

Finch, 2005; Meade & Lautenschlager, 2004;

Navas-Ara & Gómez-Benito, 2002; Stark et al.,

2006).

study, caution should be used in generalizing

current results and conclusions beyond the

conditions investigated. For example, no missing

values were simulated on the responses although

conclusions of any DIF analysis likely depend on

the missing data mechanismmissing completely

at random (MCAR), missing at random (MAR),

not missing at random (NMAR)and the amount

of missing data. Also, the scales were relatively

short, having six or 12 items, and only large

DIF was simulated on only one or two items in

the scales. Sample sizes were selected so as to

represent those often found in psychological

assessment. However, smaller sample sizes (e.g.,

< 100 examinees) will be easily encountered in

the study of low-incidence groups. Thus, further

investigations, especially with wide-ranging test

lengths and additional conditions, are encouraged

to continue to evaluate the proposed solution

along with the previous solutions for selecting an

anchor set. This practice would help practitioners

in selecting an appropriate analytic strategy to

use.

Second, this study found that the global fit

criteria are not optimal for testing DIF at the

item level. Compared to IRT, one advantage of

using CFA is to have a variety of practical fit

measures. Thus, future efforts are needed to

empirically examine distributions of those fit

measures and find some potential criterion values

suitable for item-level DIF test. Any new criteria

should be independent of the overall fit of a

baseline model; should not be impacted by
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model complexity; and should not be redundant

with other fit measures (Cheung & Rensvold,

2002).

Finally, nested data are often present in the

educational research (e.g., students nested within

classrooms, further nested with schools) as well

as in diverse behavioral and social science

settings. Both the theory and the utility

regarding multilevel SEM are well demonstrated

in the literature (e.g., Raudenbush & Bryk,

2002; Mehta & Neale, 2005; Everson & Millsap,

2004). With respect to the MIMIC DIF analysis,

an interesting question will be how the presence

of multilevel data impacts the performance and

the conclusions of usual, single-level DIF

analysis. In fact, Finch and French (2011)

showed that Type I error is inflated when

single-level (standard) MIMIC model is

innocuously fitted, not accounting for the

multilevel data structure. More interesting

investigation will be to assess the efficiency of

the multilevel MIMIC DIF analysis, relative to

detecting DIF at the between-cluster level, at

the within-cluster level, or at both.
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MIMIC DIF 분석 기법의 실증 비교:

불편정착기 문항의 임의 선택에 한 잠재 해결책

이 재 훈

캔자스 학교

본 연구는 검사 내 존재하는 차별기능(DIF)의 탐지를 해 사용되는 복수측정변수복수원인

모형(MIMIC) 확인 요인분석의 효율성을 검증한다. 특히 기존의 분석 기법(forward-inclusion,

backward-elimination)과 통계치(uncorrected or Bonferroni-corrected LR, DCFI of 0.01 or 0.002,

DSRMR of 0.005)에 한 통계 검증력을 검사 문항의 종류, 검사의 길이, 표집의 크기, 탐지

되는 문항과 정착기 문항 내 차별기능의 종류와 크기를 포함, 다양한 조건에서 조사한다. 또

한 차별기능 분석 시 연구자가 불편정착기 문항(들)을 임의 으로 선택해야 하는 것에 한

안으로 effects-coded backward-elimination 분석 기법이 제시된다. 몬테카를로 시뮬레이션을 통

해, 본 연구는 정착기 문항(들)이 실제로 편향된 경우 제시된effects-coded backward-elimination

기법만이 몇 가지 조건하에서 합한 통계 검증력을 가진다는 것을 보여 다. 검사 내 차

별기능문항의 비율이 감소할수록, 이 새로운 분석 기법은 양성률(false positive rate)을 0.05

alpha수 에서 통제하거나(Bonferroni-corrected LR과 함께 사용된 경우) 약간 인상된 수 을

(uncorrected LR과 함께 사용된 경우) 나타내었다.

주요어 : 복수측정변수복수원인모형, 차별기능, 불편정착기 문항, 분석 기법
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Appendix

TITLE: Mplus Syntax Example for Forward-Inclusion Approach (Step 1);

DATA: FILE = list.txt; ! Names data list file

TYPE = MONTECARLO; ! Indicates the type of model to estimate

VARIABLE: NAMES = X Y1-Y6; ! Defines variable names, covariate X and items Y1-Y6

MODEL: F BY Y1@1 Y2-Y6; ! Defines item loadings on latent variable F, fixing the loading of Y1 to 1

(marker-variable method for scaling part i)

F; ! Defines latent variable variance

Y1-Y6; ! Defines item variances

[F]; ! Defines latent variable mean

[Y1@0 Y2-Y6]; ! Defines item intercepts, fixing the intercept of Y1 to 0 (marker-variable method for scaling part

i)

F ON X; ! Regresses covariate on latent variable

SAVEDATA: RESULTS = forward_step1.fit; ! Saves model estimates and model fit values

TITLE: Mplus Syntax Example for Forward-Inclusion Approach (Step 2);

DATA: FILE = list.txt;

TYPE = MONTECARLO;

VARIABLE: NAMES = X Y1-Y6;

MODEL: F BY Y1@1 Y2-Y6;

F;

Y1-Y6;

[F];

[Y1@0 Y2-Y6];

F ON X;

Y2 ON X; ! Regress covariate on target item

SAVEDATA: RESULTS = forward_step2.fit;

TITLE: Mplus Syntax Example for Backward-Elimination Approach (Step 1);

DATA: FILE = list.txt;

TYPE = MONTECARLO;

VARIABLE: NAMES = X Y1-Y6;

MODEL: F BY Y1@1 Y2-Y6;

F;
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Y1-Y6;

[F];

[Y1@0 Y2-Y6];

F ON X;

Y2-Y6 ON X; ! Regress covariate on items except for anchor item

SAVEDATA: RESULTS = backward_step1.fit;

TITLE: Mplus Syntax Example for Backward-Elimination Approach (Step 2);

DATA: FILE = list.txt;

TYPE = MONTECARLO;

VARIABLE: NAMES = X Y1-Y6;

MODEL: F BY Y1@1 Y2-Y6;

F;

Y1-Y6;

[F];

[Y1@0 Y2-Y6];

F ON X;

Y3-Y6 ON X; ! Regress covariate on items except for anchor item and target item

SAVEDATA: RESULTS = backward_step2.fit;

TITLE: Mplus Syntax Example for Effects-Coded Backward-Elimination Approach (Step 1);

DATA: FILE = list.txt;

TYPE = MONTECARLO;

VARIABLE: NAMES = X Y1-Y6;

MODEL: F BY Y1@1 Y2-Y6;

F;

Y1-Y6;

[F];

[Y1@0 Y2-Y6];

F ON X;

Y1 ON X (a); ! Defines regression of covariate on Y1 as “a”

Y2 ON X (b); ! Defines regression of covariate on Y2 as “b”

Y3 ON X (c); ! Defines regression of covariate on Y3 as “c”

Y4 ON X (d); ! Defines regression of covariate on Y4 as “d”

Y5 ON X (e); ! Defines regression of covariate on Y5 as “e”
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Y6 ON X (f); ! Defines regression of covariate on Y6 as “f”

MODEL CONSTRAINT: a = 0 - b - c - d - e - f; ! Constrains regressions of covariate on items to average 0

SAVEDATA: RESULTS = effects_step1.fit;

TITLE: Mplus Syntax Example for Effects-Coded Backward-Elimination Approach (Step 2);

DATA: FILE = list.txt;

TYPE = MONTECARLO;

VARIABLE: NAMES = X Y1-Y6;

MODEL: F BY Y1@1 Y2-Y6;

F;

Y1-Y6;

[F];

[Y1@0 Y2-Y6];

F ON X;

Y1 ON X (a); ! Defines regression of covariate on Y1 as “a”

Y3 ON X (c); ! Defines regression of covariate on Y3 as “c”

Y4 ON X (d); ! Defines regression of covariate on Y4 as “d”

Y5 ON X (e); ! Defines regression of covariate on Y5 as “e”

Y6 ON X (f); ! Defines regression of covariate on Y6 as “f”

MODEL CONSTRAINT: a = 0 - c - d - e - f;

SAVEDATA: RESULTS = effects_step2.fit;


