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Testing a causal model, based on empirical data, through covanance structure modeling, often leads to the observation that any

particular hypothesized model may have equivalent models. Model equivalence occurs when two or more covariance structure models

generate identical covariance matrices. These covariance matrices, commonly referred to as model estimates of covariance matrices or

teproduced covariance matrices. must be distinguished from empirically observed or sample covariance data. When two or more

models are equivalent, the result is that they are equally fit to any observed data and thus are not distinguishable by data analysis. In

proposing a model which supports the hypotheses of interest, an investigator is obliged to rule out the equivalent models by

substantive interpretation.

This study is concerned with introducing the issue of
model equivalence in covariance structure mod-
eling(CSM) to empinical researchers. Empirical resear-
chers should recognize that testing a model with empiric-
al data by covanance structure modeling does not
guarantee a solution unique to that model. That is,
models equivalent to a particular hypothesized model

may exist. Two or more covariance structure models are
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equivalent when they generate identical covariance mat-
nrices(Joreskog and Sorbom, 1984 ; Stelzl, 1986), and by
implication, the equivalent models represent identical
covariance matrices in the population. These covariacne
matrices would be generated by the observed variables
in the population whose relationships are hypothesized
by the model. Thus, they are often called model esti-
mates of covariance matrices, estimated covariance mat-
rices, or reproduced covariance matrices. The model
estimate of a covariance matrix must be distinguished
from empirically observed or sample covariance matrices
to which the models are fitted. Although a model may be
correct, the empirically observed covariance data will be
different from the model estimate because of sampling
error. The degree of discrepancy between a model

estimate and empirical covariance matrix determines the
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overall goodness of fit of a model to an empirical data
set; overall fit measures are computed based on this
discrepancy. When two or more models are equivalent,
meaning that they generate identical model estimates of
covariance matrices, these covariance matrices will be
equally discrepant from any empirical data set to which
the models are fitted. This equal discrepancy will result
in identical values on the overall fit measure. Thus,

equivalant models are not distinguishable by data analy-

sis, in which fit measures are used as the cnteria of .

evaluating goodness of models. While model equivalence
does add difficulty to the testing of hypothesized models,
1t also highlights an important issue often neglected by
empirical researchers. In proposing a model which sup-
ports the hypotheses of interest, an investigator is
obliged to rule out models which explain the phenomena
of interest equally well. How to determine the equivalent
models and how to evaluate them are essential in
applying CSM. In this paper, the focus of discussion
will be the definition and implications of model equiva-
lence. Details are provided in the following sections : (a)
occurrence of equivalent models in CSM, (b) overview
of CSM, (c) model equivalence in CSM, and (d) demon-
stration of equivalent models and implications of model

equivalence.

Occurrence of Equivalent Models in CSM

During the last ten years, CSM has emerged as a
powerful technique to investigate structural relationships
among variables. Aided by the development of the
computer program .LISREL(]oreskog and Sorbom,
1984), CSM has been widely used in the behavioral and
social sciences to develop and test theories. From the
outset of its conceptualization, theorists of CSM have
pointed out that for any given model, there may be one
or more alternative models that are equally valid in a
mathematical and statistical‘ sense, when a covariance

structure is analyzed. The existence of equivalent models

will become obvious by understanding the nature of
modeling in behavioral and social sciences.

In practicing science, it is desirable that an investiga-
tor be able to control the varables of interest and
observe the effects of such variation on some external
criteria, 1e., dependent variables. Natural science is in a
better situation to control variables in an experimental
laboratory. Comparable control in the social and be-
havioral sciences is simply not accessible in most situa-
tions. In most non-experimental studies, what we can do
is observe the resultant of relationships among variables,
which resultant is sampled form the population as a form
of sample covariance(correlation) matrix. In the process
of investigating the structure underlying the covanance
(correlation) data, we apply an educated guess about the
plausible relationships which would exist in the poupula-
tion. This educated guess involves modeling or con-
structing hypotheses.

Since correlation data is a special form of covariance
data when the variables are standardized, covariances
and correlations will be interchangeably used in this
paper. Covariance data is the common metric used in
modeling possible relationships among variables. CSM
1s the most popular technique in specifying and testing a
model’s fit to a covariance data set. Although models
may be logically distinct, some of them may generate
dentical covariance matrices. The covanance matrix
which would be generated by population-based variables
whose relationships are described by a model is called a
model estimate of covariance matrix. estimated covar-
lance matrix, or reproduced covariance matrix in CSM.
An estimated covariance matrix is almost always diffe-
rent from a sample covanance matrix. There are two
sources causing discrepancy between the sample and
estimated covariance matrix : Sampling error due to the
nature of the smple and modeling error due to misspeci-
fications in the model. Regardless of different sources
and size of this discrepancy, an estimated covariance

matrix can be generated by two or more logically
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different models. In this case, fitting any one of those
models to a sample covariance data is equally good, in
terms of the likelihood that the empirical data might
have been sampled from a population where the fitted
model would exit. The equally good likelihood is ex-
pressed as equally good fit measures. Thus, for any
given sample covariance data. the structure among the
variables may be modelled 1n several different ways
which are equally good in mathematical and statistical
sense. The term “equivalent model” is named after this
mathmatical/statistical equivalence. The formal defini-
tion of equivalent models will be given later. Among
these equally good or equivalent models, the most
plausible model may be determined by interpreting the
substantive logic underlying each model. Although in-
vestigators search for the best model by analyzing
sample covariance data, the model achieved by data
analysis may be nothing but an equivalent model to the
best model. Since the true model is never known, the
term “best model” will be used to represent the most
plausible model that would exist in the population.
More than one equivalent model may be observed in
empirical data analysis and/or hypothetical model con-
struction. Faced with multiple equivalent models, sub-
stantive interpretatton is needed to distinguish them.
Given the existence of equivalent models to the best
model, data analysis does not necessanly lead us to the
best model. Without allowing for the possibility of model
equivalence, the effectiveness of applying CSM is signi-
ficantly limited. Despite the importance of model equiva-
lence, the discussion concerning it has not taken place in
the literature. Although it has never been questioned that
the same set of data may be fitted equally well by quite
different models in logic, model equivalence has rarely
been subjected to systematic investigation(Stelzl, 1986).
»Few expository papers have been published on the
mplications of equivalent models for theory construction
and development for applied researchers. Equivalence

in CSM has a long history of recognition, but virtually

no history of examination. Before detailed discussion of

model equivalence, overview of CSM will be presented.

Overview of Covariance Structure
Modeling

CSM is well known by other names such as path
analysis, simultaneous equation modeling, linear structu-
ral relations(L.ISREL) modeling, or causal modeling. All
of these different names represent techniques concerned
with hypothesizing, testing, modifying, and cross-validat-
ing models to analyse empirically observed covariance
data. In scientific research, it is desirable to secure data
which will allow cause and effect inference. Usually data
appropriate for causal inference can be obtaned by
controlling independent variables and observing the out-
come of dependent variables. However, many situations
do not allow researchers to control variables, in which
case only the covartances among the variables, and not
cause and effect relationships, can be stated. Covariance
data simply describes the degree of covariation among a
set of vanables without explicitly indicating the complex
relationships which might underlie them. In order to
reveal these complex relationships, various models must
be proposed and tested. CSM is a quantitative imple-
mentation of analyzing covaricance structures by model-
ing and testing the network of relationships.

Historically, CSM is an outgrowth of path analysis in
biometrics and factor analysis in psychometrics. Path
analysis is concerned with the network of measured
variables that are explicitly observed. Factor analysis
involves extracting factors which are latent in a set of
measured variables. Measured variables are indicators of
a factor. A factor may be called a latent variable. A
measured variable (MV) is a variable that is directly
observed and measured. A latent variable(LV) is a
hypothetical construct that is not directly measurable, but
is approximated by using valid and reliable MVs as

indicators.
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Models are constructed in CSM based upon the
relationship between the LVs and MVs, referred to as
the measurement part of CSM, and are constructed
based upon the causal relationship among the LVs,
referred to as the structural part of CSM. Thus, a
covariance strusture model generally consists of two
submodels : Measurement model for measurement part
and structural model for structural part. For a given set
of LVs and MVs, a covariance structure model is
defined as a hypothetical pattem of relationships among
LVs and MVs. Then, CSM is a general method of
modeling and testing the relationships among measured
variables and latent variables. These relationships are
represented by known or unknow parameters in the
model. Given the sample covanance data of MVs, one
can estimate the unknown parameters and evaluate the
goodness of fit of the model. Depending on the fit
measures, model modification is considered (Long,
1983).

A brief review of the mathematical framework of CSM
1s presented to define the equations, terms and notations
which are used throughout this study. Because LISREL
(Joreskog and Sorbom, 1984) is the most widely used
computer program to solve CSM, the mathematical

representation employed in LISREL is presented here.

LISREL Model

Measurement Model : X=A, £+ 0
Structural Model: 7=B7+T §+ ¢
Measurement model : relationships between MVs and
LVs

Structural model : relationships among LVs

Y=A7t€

The symbols used in the measurement model and the
structural model will be described. Each symbol stands
for a vector or a matrix.

x :independent MV

y : dependent MV

¢ :independent LV

7 :dependent LV

¢ :error of independent MV

€ :error of dependent MV

§ :equation error or residual

A, :factor loading of x on £

A, :factor loading of y on 7

I" : path coefficient between independent LV and depen-
dent LV

B:path coefficient between dependent LVs

Assumptions :

1) All variables are measured from their means.

2) None of the structural equations are redundant.

3) The measurement error and the equation error are
uncorrelated.

4) The LVs and measurement errors are uncorrelated.

5) The independent LV and the equation emor are
uncorrelated. For this study, a simpler representation of
SM was developed, which will be called the four-para-
meter model in contrast to the LISREL model, which
uses eight parameter matrices for model specification. In
the four-parameter model, different notations to disting-
uish between independent and dpendent variables in
MVs and LVs are not used, although conceptually they
are distinguished. This is for simplifying masthematical
demonstrations. The differences in notations between

1.ISREL and four-parameter model will be shown.

LISREL Four-Parameter Model
X,y y
d.€ €
& 7
r'B B

Four-Parameter Model
Simple definitions of model will be used.

Measurement Model :y=A 7 + ¢
Structural Model: 7=B 7+
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Notations are defined as following :
y=vector of MV

A =matrix of factor loadings of y on 7

7 =vector of LV

B =matrix of path coefficients between LVs
€ =vector of measurement error

¢ =vector of equation error or residual

The assumptions are the same as those in LISREL
model.

Measurement model and covariance matrix of
MVs

The covariance matirx of MVs can be derived as

follows from the measurement model. Because all van-

ables are measured from their means, the expectation of

an outer product of two vectors of variables will be a

covariance matrix of the vanables.

y=A7+e¢

y=T"A+ €

E(yy)=AE(77)A+E{€¢)

S=AwA+E (1)
2 :covariance matrix of MVs
@ : covariance matrix of LVs

# : covanance matrix of measurement errors

Structural model and covariance matrix of MVs
The relationship between the structural model and the

covanance matrix of observed variables is shown below :

7=B7+¢

(I-B)7=¢

7=(1-B)" ¢
7=R'¢

7= BTB7 stands for the transposition of B)
E(77)=BY ¢ )BT
w=FypT )

¥ : covariance matrix of §

In equation 2, the covariance matnx of LVs or @ is
expressed as a function of the parameters in a structural
model. By substituting the matrix @ in equation 1 with
the right hand side of equation 2, the structural model is
represented as a part of the total formation of the
covariance matrix of MVs. From equation 1 and equa-
tion 2,

ES=ABYBT A+ (3)

or 2=A(IB)'"W¥(IB)TA+ 4 (4)

Model specification and parameter estimation
In the fourparameter model, £ is expressed as a
function of four parameter matrices A,B,¥, and 8 (see
equation 4). Each parameter matrix of these represents
factor loadings(A), path coefficients(B), and
variances/covariances for error terms (¥ for £ and 8
for €)in a path diagram. A path diagram is a structural
network of all the variables in a CSM. A" simple
example of a path diagram is shown in Figure 1 for

illustration.

&1 €3
| i
Ya Ys

. pi w] ,
CawC

]

&

b M
f f
€2 €4

Figure |. A Simple Diagram of a Covariance
Structure Model

Conventionally, circles denote LVs, squares denote
MVs,

and an arrow indicates direct effect and its
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direction. Arrows between LVs and MVs indicate factor
loadings of MVs on LVs. An arrow between two LVs is
called a “path.” The “4” is the element of A, “B” is the
element of B, the varance/covariance of “€” is the
element of 8, and the variance/covariance of “ £ is the
element of ¥. Each element in a parameter matrix can
be classified as a fixed parameter or free parameter. By
fixing or freeing each parameter, the parameter matrices
specify the appearance of the path diagram. Fixed
parameters are the known coefficients assigned to the
paths, factor loadings, or vanance/covariance of error
terms. If a parameter is fixed to zero, the path, factor
loading or error represented by that parameter is elimin-
ated in the path diagram. A path whose coefficient is
fixed to zero may be called a “zero path.” Free para-
meters are the unknown path coefficients, factor loadings,
or error terms which are estimated by solving the CSM.
A path where a free parameter is assigned may be called
a “non-zero path.”

Solving the CSM in order to estimate free parameters
is accomplished by solving the sample version of equa-

tion 3:

S=ABBRBT)A+ 0.

Estimating free parameters from the sample covariance
matrix S includes two steps: first. extending the right
hand side in equation 3 to derive separate equations and
second, relating each element in S to a corresponding
equation from the first step. The equations obtained from
the second step are called normal equations(]James,
Mulaik, and Brett, 1982). If the number of normal
equations is the same as the number of free parameters,
the whole model may be justidentified. When the model
1s just-identified, the numerical values of parameters are
determined in only one way. If the number of normal
equations is less than the number of free parameters. the
model is undendentified and the values of undendenti-

fied parameters are not unique and not reliable for

interpretation. If the number of normal equations is more
than the number of free parameters, the model is almost
always overidentified, and the parameters are estimated
by unweighted least square, generalized least square, or
maximum likelihood methods.

Underidentification is not interesting to investigators
because of the indeterminate value of the parameters,
just-identification of a whole modeldoesnot have scientific
parsimony, and therefore provides little assistance in
understanding the relationships among the variables. A
just-identification model shows a perfect fit to any data
sel and cannot be statistically tested. Overidentification
of a model means that the model is parsimonious but
shows less than perlect fit to collected data, Instead of
meaningless perect fit, scientific parsimony is obtained
by specifying an overidentified model with a reasonable
degree of fit to the data.

Overali fit measures

Once the parameter estimates(A, B, ¥, @) are
ohtained by solving the sample version of equation 3,
they are substituted into the right hand side of equation
3 to obtain 3, the model estimate of covariance matrix
or reproduced covariance matrix. If the procedure of
obtaining parameter estimates is expressed as “S=>f(para-
meters)”, the procedure of obtaining 3 is “3<H(para-
meters).” If a model is just-identified, parameter values
are determined in only one way from S={(parameters)
and will be exactly the same as S from S<=f(determined
parameters). However. if a model is overidentified, para-
meters are estimated optimally satisfying the restrictions

given by more equations than are needed to determine

the parameter values in only one way. Therefore, there is
a discrepancy between S and S obtained by <&
{(estimated parameters). 4

The discrepancy between 3 and S represents the lack
of fit of the model caused by sampling error and
modeling error, and is used to compute overall fit

measures, The most commonly used fit index is the x
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value and its corresponding probability level (P-value)
with which X* is larger than the obtained value from
fitting the hypothesized model to the data. The P-value
is determined for a particular value and its degrees of
freedom. the degrees of freedom will be determined by
substracting the number of free parameters from the
number of normal equations(ie., the number of variances
and covariances of the MV,). If the ¥ value is very
large compared te its degrees of freedom, the P-value
becomes very small, indicating that the discrepancy
between £ and S is significantly high and considered to
contamn more than random sampling emor. A large
discrepancy between S and S reflects modeling error in
addition to sampling error. Then, it is likely that S may
have been sampled from a population where the relations
of variables can be described by a model other than the
initially hypothesized model. The initial model may he
modified to make it fit better to the data. However, the
"X value and its probability level are obtained under the
full information maximum likelthood method, and are
therefore sensitive to distribution and sample size. The
root mean square residual (RMR) (Joreskog and Sorbom,
1984) is easier to interpret without statistical knowledge
because it measures the average residual in relation to
the size of the observed variance and covariance in a S
matrix(Joreskog and Sorbom, 1984).

RMR=+/[23 3(5;-5 )] /k(k+1)

where s;; and o ;i are typical elements of S and =
respectively, k is the number of measured variables, and
kk+1)/2 is the total number of covariance/variance
elements ; (5)+k=k(k-1)/2+k=k(k+1)/2. When RMR is
small, a model is considered to be a good fit to a dat set.

When the input data is a correlation matrix, an RMR

value less than .05 is considered to indicate a good fit.

Model Equivalence in CSM

Model Equivalence :its Definition and Result

When two models are represented by distinct path
diagrams, they appear to be different models. However, if
the two models generate the identical covariance mat-
rices, ie. 3 matrices, they are “equivalent.” To emphasize
the relationship between the path diagram and the
concept of equivalence, equivalence in CSM is defined
as the property that models with distinct path diagrams
generate identical estimated covariance matrices(Jores-
kog and Sorbom, 1984 ; Stelzl, 1986). In a mathematical
expression, equation 21=3, defines the equivalence of
model 1 and model 2. By this definition, the same
number of MVs in both models are necessary for models
to be equivalent because the estimated covariance mat-
rices should be identical elementwise. The number of
LVs may or not may be the same because LVs are
indirectly estimated by MVs. The same number of LVs
between two equivalent models will be assumed for the
convenience of illustration in the present study.

Because of sampling error and modeling error, it is
expected that there is discrepancy between a sample
covariance matrix S, and a model estimate of covariance
matrix, 3. This discrepancy between S and 3 is the
basic component in computing the degree of fit of the
model to the given data, i.e. S. When this discrepancy is
small, it is attributed to random sampling error. In this
situation, the hypothesis that the model may exist in the
population is “well supported” by the empirical data.
Any two models with identical £ will show an equal
degree of discrepancy between S and 3. Thus, it
follows that equivalent models, when they are fitted to
an empirical data set, necessarily show identical values
on the fit measure. That is, equal degree of fit is a
necessary result of model equivalence, When the good-
ness of fit indices are used to determine the best fitting
model, as is ordinarlly done in applications of CSM,
equivalent models are not distinguishable.

It should be emphasized that the term model equiva-

lence reflects mathematical and statistical equivalence of
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two models with distinct path diagrams, regardless of
difference in substantive logic underlying the models. If
equivalent models represent equivalent hypotheses, the
issue of model equivalence would not be of any scien-
tific interest. Model equivalence becomes an important
issue because any number of models generating identical
Ss are not differentiated by mathematical/statistical
ways in spite of different theoretical structures under-

lying the models.

Equally valid altematives in modeling covariance
structure

Because the true structural relationship is not observ-
able and only the degree of covariation between the
variables can be determined from data, there are many
altematives in modeling the structure underlying the
empirical data. Unless the correlation between observed
variables, X and Y, is caused by an accident(see Kenny,
1987, p.122 for example), the covariation 1s modelled by
one or more of the three effects specifying cause-effect
relationship : Direct effect, indirect effect, or spurious
effect(Kenny, 1979). A direct effect is XY or X+,
where there is no intervening variable between X and Y.
An indirect effect may he expressed by as X—+Z~Y or
X+Z+Y, where Z represents one or more intervening
vanable(s). A spurious effect occurs when two variables
are correlated only because they are caused by a com-
mon cause ; in X+Z—Y, there 1s no direct or indirect
effect between X and Y, rather, X and Y are correlated
because of the common cause Z. Thus. based on one
correlation between X and Y, one can hypothesize causal
relationships in five different ways: X—=Y, X«Y, X—Z+
Y, XZ+Y, or X~Z-+Y. Any one from of the five is
equally valid in modeling the covariance structure be-
tween X and Y. When latent variables are involved, the
number of modeling alternatives will increase geometri-
cally.

Although the existence of a significant correlation

between X and Y implies causality most of the time,

correlation alone does not indicate the exact form of
causation(Kenny, 1987 ; Mulaik, 1987). Given a correla-
tion between two vanables, which one form of causation
occurs is uncertain and ambiguous. When variables
believed to be causally related are not measured directly
but rather are only indicated by measured variables, as in
the case of latent varables, hypothesizing structural
relations may become more uncertain and ambiguous
than when cause-and-effect vanables are directly obser-
ved(Mulaik, 1987). Mulaik argues that even ex-
perimental studies are not free from the uncertainty and
ambiguity of causal inference, although they may have
relatively less degree of uncertainty and ambiguity than
non-experimental studies(see Mulaik, 1987, p.20 for de-
tailed discussion).

Examples of alternative but equivalent models will be
shown, using three varables that are assumed to be
directly observed. Suppose Model A, based upon the
intercorrelation among three variables, is hypothesized as
follows: weather condition—psychological state—produc-
tivity. In this model, it is implied that one’s productivity
is directly influenced by his/her psychological state, and
that latter is influenced by the weather condition. After
collecting data, this model might yield a fitness fa to the
data. What happens when an alternative, Model B-
“weather condition+—psychological state—productivity”, -
is fit to the same data? This model might appear silly in
termsof substantive logic because it is very unlikely that
one’s psychological state has a direct effect on the
weather condition. However, the two models are mathe-
matically equivalent and thus, data analysis to fit Model
B will always show the same fitness fa as Model A
does. This property, that the same fitness fa is obtained
by hypothesizing conceptually different models, is
alluded to in many texts on CSM(Pedhazur, 1982,
Cohen and Cohen, 1983 ; Duncan, 1975; Heise, 1975,
Dwyer, 1983 ; Kenny, 1979 ; Van de Geer, 1971). As for
the very good fit of a model, many authors warn not to

interpret it as a proof of the model in the population
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(Bentler, 1980 ; Joreskog and Sorbom, 1984 ; Duncan,
1975 Saris & Stronghorst, 1984). Thus, even with a
good fitting model the investigator is obliged to rule out
alternative equally good fitting models by a non-
quantitative way. Thus, evaluation of multiple equivalent
models will be in order.

Evaluation of equivalent models

When data analysis cannot distinguish Model A from
Model B, a researcher may be able to determine which is
the more plausible based on a substantive interpretation
of the equivalent models. In the above example Model B
looks odd, making 1t easy to choose Model A. However,
if the two equivalent models C and D are as follows,
both are meaningful, so that the choice between the two
is very difficult.

Model C: task difficulty—*motivation—performance
Model D: task difficulty+-motivation— performance

It is‘ possible that task difficulty motivates the worker
differently, as in Model C. Inversely, motivation may be
a factor in perceiving task difficulty differently . as in
Model D. If a researcher hypothesizes a model, he/she
should not ignore the existence of competing equivalent
a priori models. If the multiple equivalent models are
meaningful, as is the case with Models C and D, they
can be distinguished only by suitable interpretation
because they are equally valid in terms of mathematical
and statistical fit. This issue will be discussed again

the implications of model equivalence later.

Demonstration and Implications of Equiva-
lent Models

Demonstration of equivalent models

A numerical example of equivalent models will now
be demonstrated. Model 1 “7 ;— 7 ,~ 75" and Model 2

“Tie=T7,+73" are equivalent. To demonstrate their

equivalence with respect to numerical data, two MVs are
observed for each L.V, The complete form of each model
is shown in the path diagrams in Figure 2 and Figure 3.
Suppose the sample covariance matrix of MVs is as

shown in Table

[/ . i 0s coemm |y, - P '

——

Figure 2. Model |

¢, £, £,
° o nz o |
0o --- Y Gy - Ys RS Ye

Figure 3. Model 2

Tabie | Coveriance Matrix of MV

5=y .5

y: .01 .01 .6

ye .18 .02 .01 .4

ys .13 .18 .01 .11 .57
ye .05 .01 .20 .01 .01 .7

When S is analysed by LISREL VI, both models
produce the same Ss as shown in Table 2. The 3 is
the “fitted moment matrix” in the LISREL output. The

moment represents covariance or correlation.
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Table 2 Estimated Covariance Matrix of MV

Li=i=y1 5
ve 001 .3
ys 007 .009 .6
yo .18 .051 .004 .4
Ys ,141 .18 .013 .079 .57
ye 010 .013 .20 .006 .02 .7

The goodness of fit index, RMR is .014 for both models
1 and 2. This fit is very good but not perfect. Regardless
of the goodness of fit, model 1 and model 2 produce the
same Ss with any empirical data S, thus indicating that

two models are equivalent.

Empirical Implication

At the data analysis stage, a model may be modified
by changing its specifications. Changing the specifica-
tion in hopes of improving parsimony and/or fit of the
model to the data is referred to as a specification
search(Leamer, 1978 ; Long, 1983 ; MacCallum, 1986).
Empincally, mode! equivalence may occur in the process
of specification searches. There are two things to note in
this regard. First, in the process of a specification search,
a researcher 1s encountered with a chance of generating
equivalent models. Second, given the existence of the
best model, specification search may lead to a model
which is equivalent to the best model.
Generating equivalent models. In the process of model
modification, the researcher may arrive at a point where
equivalent modifications can be made, a point where
different modifications result in equivalent models. LIS-
REL. program provides modification indices (MI) in-
dicating the improvement of fit if a fixed parameter is
freed. If the same numerical values of Mls are shown on
different parameters, fit will be equally improved regard-
less of which parameter is freed among those Mls of
identical values. The number of Mls that have identical
values is the number of models that can be generated by

this type of modification ; these models necessarily show

equal degree of fit. Although equal fit is not equalized
with model equivalence, equivalent Ss are always
observed among these equally fitting models. Therefore,
researchers are empirically encountered with a chance of
generating equivalent models when two or more Mls
show identical values. The issue of model equivalence
confronts the investigator, and initiates a decision mak-
ing as to which parameters should be logically freed.

Arrival at a model equivalent to the best model. After data
analysis is done and a model is finally chosen, the model
may have equivalent models that have alternative theore-
tical structures with equal goodness in terms of mathe-
matical and statistical fit. The chosen model may be
more plausible than any other of its equivalent models.
However, the best model is not always selected. Given
the possible existence of equivalent models to a particu-
lar model, it is always conceivable that investigators may
amve at one of the equivalent models rather than the
best model. Thus, model searches relying on data analy-
sis is not complete in itself because it does not disting-

uish equivalent models from the best model.

Theoretical Implication

Theoretically. equivalent models can be found a priori
by applying some rules (eg., Stelzl, 1986), although
applicability of the rules is limited. When formulating
competing models before data analysis, it is possible to
hypothesize competing models which would generate
identical £s if they are fitted to any sample covariance
data, S. That is, equivalent models may be constructed
at the hypothesis generation stage. The a priori rules to
test whether such competing models are equivalent will
he discussed later. If the competing models do happen to
be equivalent, they cannot be tested against each other.
Thus, multiple equivalent models may be constructed a
prion, as well as be empirically generated during data
analysis. In either case, substantive interpretation is the
only way to distinguish them. If some of the equivalent

models are theoretically meaningful but not known to the

-175 -



investigator, a serious limitation to theory development
exists. The following theoretical implications will be
discussed in turn: caution in constructing competing
models a priori, the need of substantive interpretation,
and the unknown meaningful equivalent models.
Caution in constructing competing models a priori. At the
hypothesis generating stage, one model may be con-
structed to test its fit to the data. The investigator may
construct alternative models a prioni to compete with the
initial model. In terms of the confirmatory use of CSM,
this strategy is preferrable to testing only the mitial
model and continuously modifying it.
Given the possible existence of a set of equivalent
models to a hypothesized model, the competing models
may be members of this set. If this is the case, it is
impossible to test the competing models against the
initial model because they will equally fit the data. In
this case, data analysis does not provide a way to test
competing models against the initial model. Suppose an
initial model is “7 =775, ” I{ another model “7;
<« 7,-7."is constructed as a competing model a
prior, it would be impossible to test these two models
since they are equivalent models.
Need of substantive theoretical interpretation. Multiple
equivalent models can be found at the hypothesis gener-
ating stage or at the chance of empirically generating
equivalent models. When a particular model is chosen at
the end of data analysis. one or more equivalent models
to the particular model can be generated by applying
some rules(eg., Stelzl, 1986). Equivalent models are
equally good in terms of fit. Given that overall {it
measures are used as criteria for determining the good-
ness of a model, equivalent models cannot be disting-
uished by the fit measures which are mathematical and
statisical indices. Rather they can be distinguished by
comparing the substantive logic underlying their distinct
path diagrams. The value of a given model is determined
as much by the logic underlying its structure, as by the

empirical demonstration of the goodness of fit to the

collected data(Cohen & Cohen, 1983). when a set of
models shows an equal degree of fit as a result of model
equivalence, empircal data does not provide any in-
formation to evaluate the equivalent models.

In order to determine the most plausible among the
equivalent models, substantive interpretation of path
diagrams is the only way. Since equivalent models may
be distinguished by their path diagrams, comparisons of
the path diagrams in terms of what they substantively
hypothesize will allow the investigators to evaluate
equivalent models. Thus, encountered with equivalent
models, it is required that one's theory be comprehensive
and robust enough to rule out less plausible but mathe-
matically equivalent models. In sum, in order to support
the plausible structure of a model, alternative equivalent
models are to be ruled out by logical and substantive
arguments.

Unknown meaningful equsvalent models. In order to
obtain equivalent models, some of the directions of the
paths of the hypothesized model may be reversed. Invert-
ing the direction of a path means a change in the
structural hypotheses, and this usually will bring about a
remarkably different interpretation and provide a different
perspective in theory development. Thus, if a meaningful
equivalent model is not known to the investigator, a
serious limitation to theory construction has occurred.
By proposing one model without taking into account the
possible existence of meaningful equivalent models,
theoretical constructions are incomplete (Stelzl, 1986). At
any decision stage, to stop a specification search and
select a model as the best one is a risky affair, since the
possibility exist that there may be more than one

meaningful equivalent model to the selected model.

Conclusion

In addition to the important implications of model
equivalence, it should be emphasized that a particular
model may have equivalent models, regardless of the
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source of the model and regardless of its degree of fit to
the data. Whether the model is initially hypothesized and
found to fit the data well, or whether it results from
modification of an initial model, there will still exist
alternattve models that are equivalent and thus will fit
equally well, The question of whether the initial or the
modified model fits the data well or poorly does not
affect the issue of model equivalence. Thus, arguments
in terms of the number of modification made to an initial
model or degree of fit do not in any way free the
researcher from the responsibility of dealing with the
issue of equivalent alternative models. Because at least
one equivalent model exists to any given model (Lee,
1987), a researcher must evalute and rule out the
equivalent model(s) to complete his/her work in propos-
ing a model.

Despite the general awareness of the existence of
equivalent alternative models, the issue is seldom, if
ever, explicitly dealt with in applied research. It could be
that investigators just do not report altemative models
that are deemed implausible or perhaps they do not
search for models that conflict with their hypotheses. At
least one major reason for this is that very little is
known about how to identify alternative models which
are equivalent to a given model. Stelzl(1986) developed
four rules that can be used to check model equivalence
or develop equivalent models. Applicability of her rules
is limited to recursive structural models, where path
directions in the structural part of the CSM is un-
idirectional. A simplified rule accommodating Stelzl’s
four rules has been developed by Lee(1988). Rules that
are applicable to non-recursive models as well as to
recursive models are developed by Lee and
MacCallum(1988). However, these rules to discover
equivalent models are not exhausitive and not as yet
widely introduced. For future research, it would be very
desirable to develop an efficient procedure for determin-
ing equivalent models, a procedure that would allow

researchers not only to discover models equivalent to a

given model, but also to explicitly evaluate them. Once
equivalent models are determined and evaluated, they
can yield increased support for a given model if the
alternatives were shown to be implausible, or they could
reveal plausible altemative models previously unrecog-

nized.
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