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Empirical Bayes Estimation for Unbalanced Multilevel
Structural Equation Models via the EM algorithm

See-Heyon Jo
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The question of how to analyze unbalanced hierarchical data generated from structural eguation models has
been a common problem for researchers and analysts. Among difficulties plaguing statistical modcling are
removing estimation bias due to measurement error and incorporating variability associated with the social milieu
in which individuals are situated. This paper presents empirical Bayes estimation by means of the EM algorithm
in the context of unbalanced sampling designs. The EM algorithm is particularly useful when the analytic
expressions exist for the conditional expectations of the missing data given complete data and for the maximum
likclihood estimators (MLE) of the model parameters. The accuracy of the algorithm was tested using a set of
arlificial data. The numerical results suggest that this new methodology is a useful mean for studying
hypothesized relations among latent variables varying at two levels of hierarchy.

1. Introduction

A distinguishing characteristic of the data
encountered in many areas of psychological
and educational research is that the
sampling structure is hierarchical. Generally,
students are taught in groups by a teacher,
several classrooms are grouped together
into a school, and schools into districts.
Then students who attend the same school
or classroom are expected to share certain
educational experiences. As a result, the
educational outcomes for these students will

be, to varying degrees, correlated. These

effects of clusters are sensibly described
within the context of multilevel models
(Goldstein, 1987, Bryk & Raudenbush, 1992;
1993). Under the
assumption of ILD, covariance structure
modeling (Joreskog, 1977) of such data
misguides statistical inference by not taking

Longford, standard

into account the intracluster correlations
arising from hierarchical data. An important
implication of such structure is that the
classical assumption of independence among
nested observations is violated.

In the context of the linear model,

statisticlans  (Lindley &  Smith, 1972;
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Raudenbush, 1984, 1988; Goldstein, 1986;
Longford, 1987) developed hierarchical linear
models :(HLM) which are appropriate and
powerful means of modeling hierarchical
data. It was not until hierarchical linear
modeling techniques were developed that
complex relationships among  variables
across all levels could be inferred. Such
techniques have been widely used for
various types of research topics such as
cognitive growth and change (Bryk &
Raudenbush, 1987; Goldstein, 1989),
cross—national  population  studies (Mason,
Wong & Entwistle, 1984), meta-analysis
(Raudenbush & Bryk, 1985), and
organization evaluation (Aitkin & Longford,
1986). However, none of the univariate
hierarchical models offered methods for
estimating measurement error. Also there

have been no attempts of applying the EM

methodology to the structural equation
models for hierarchical data.
Based on the Dbalanced-data theory

provided by Schmidt(1969) and McDonald
and Goldstein (1989), Muthen (1990) showed
that the maximum likelihood fitting function
could be rewritten such that the between
and within structural models could be
estimated by means of a multi-population
analysis in LISCOMP (Muthen, 1987) or
other  comparable structural equations
software. In the case of balanced data this
could be accomplished by treating the
within-group deviations as sampled from
one population and the between-group

deviations as sampled from a second
population. For the case of unbalanced data,
each cluster of groups which have the same
number of observations is treated as one

population. Then Muthen (1990) proposed an

"ad hoc” estimator.

Lee and Poon(1992) also used the similar
strategy of classifying level-2 units into
subsets of level-2 units having equal
sample size. They proposed an estimator for
such data which, though not maximum
likelihood (ML), has the same asymptotic
distribution as the ML estimator as the
number of level-2 units per subset
increases without bound. Computationally

this estimator is available using standard

software  program, such as LISREL
(Joreskog & Sorbom, 1993) and EQS
(Bentler, 1989).

More recently, Raudenbush (in press)

proposed an alternate approach for the
unbalanced case, He conceptualized the
problem in the framework of a balanced
design in which all groups have the same
number of sarﬁpled cases but cases are
missing at random. In particular, in the
M-step (maximization) the method uses the
standard program such as EQS (Bentler,
1989).

Current methods of the likelihood fitting
function uses the Davidon-Fletcher /Powell

algorithm. This algorithm often may yield

one or more variance estimates with
nonpositive values, and too-large
off-diagonals yielding correlations larger

than one. This has been referred to as an
improper solution (Gerbing and Anderson,
1987). In that case, there is no way to
assess the goodness-of-fit and to interpret
parameter estimates. This has been a
potential source of controversies in the
application of the latent variables model
1977). Another disappointingly
common experience in using LISREL
(Joreskog and Sorbom, 1993), EQS (Bentler,

(Joreskog,
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Figurel A Path Diagram for Multilevel Structural Equation Model

1989) for assessing the goodness-of-fit is
to conclude that the fit is not satisfactory,
suggesting unknown specification errors. As
4 result, it is necessary to do a
specification search, "a process of
sequentially modifying a model so as to
improve its fit and parsimony”. However
there is no reliable guide for respecification
procedures (Herting and Costner, 1985). The
purpose of this paper is to develop empirical
Bayes estimation procedures for computing

maximum likelihood (ML) estimates of the

parameters in multilevel structural equation
models in the

sampling design. This procedure does not

context of unbalanced
require classifying level-2 units into subsets
of of level-2 units having equal sample
size. The special version of the EM
algorithm is implemented for computing ML
estimates. This new methodology provides
completely new solution and insight into
the above long-standing problems. In the
following section 2 the general multilevel

structural equation model is presented with
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a very simple example. In section 3 ML
estimators of the parameters are developed
in the framework of

empirical Bayes

approach. One numerical analysis of
artificial data is made to check the accuracy
of the algorithm. Finally the implications of
this new methodology and some further

research questions are discussed.

2. Multilevel Structural Equation
Models

To illustrate how measurement and

substantive theory can be integrated
hetween and within levels in one overall
framework, a hypothetical achievement
model will be examined as an example.
Consider a model where mathematics
achievement is believed to be influenced by
a student’s gender and attitude toward
mathematics, a classroom characteristic
teaching style. Teaching styles are believed
to influence classroom mean attitude and
achievement. Gender also is believed to be
attitude and

achievement on the individual level. The

related to students’
path-diagram for this hypothetical model is

shown in Figure 1.

A simple item level equation for each
individual is

V= Aw”i)+/1 b77bi+€ij (1)

where j=1,2,...., ] for classrooms, i=1,2,....,
n; for students nested in classroom j.  The
subscript "w” means the within-level, while
where

"b"  means the between-level.

e; ~N0,2); a typical form for 3 is
Diagonal(f",o’z,oz,o%). Assuming structural

linear relationships among constructs, the
theoretical relationships on the within-level
depicted at the bottom part of Figure 1 can

be expressed through the following
structural equation
7],','=A77i}+BZ,'j+u,'i (2)

uy =Lyl ", uy ~NO, 4)

Equation (2)
individual-level the latent variables are a

stipulates that on the

linear function of themselves and the

exogenous predictor variables, In our

example, gender is an exogenous predictor
variable.

Now we reduce equation(5) into

7= Zymy T 05 (3)
| P1ij
o =[] @
[ 1 0 - Uy o
[_a’l 1] [uzﬁ] 05 ~MO.T).

T,= (I-A) ' 4I-A4)7",

Ty _
7;;‘; =vec‘({ _101 cl)] ][ g:; gi))]) (5)
T4

where vec* stacks the transpose of each
row of a matrix into a vector. Now on the
between-cluster level, the structural
relationships depicted at the upper part of

Figure 1 can be expressed as follows :
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75= A+ Byw; +u,, (6)
where

uy= o] T, uy ~NO, 4 5)

Equation (6) is the expression for the

structural relationships among latent

variables and the exogenous predictor

variable on the cluster level. All of
exogenous predictor variables are observed
directly without error, e.g., school location
{public,

nonpublic), religion, gender, ethnicity, family

(rural, wurban), school sector
size (numbers of a household), individual’'s
age, current membership in a political party
or sports club.

Then we have the reduced form for

between-level structural equations (6).

5= Wiyt N
Uy “'N(O, T'ﬁl)' (8)
Tpo= (I-Ap ' 2(I-Ap~" 9)

By substituting the structural eguations
(3) and (7) into (1), we have the following
combined equation (10). This representation
permits us to develop a special version of
the EM algorithm for general multilevel

structural equation models :

vi =1A.2Z;1 A ,,W}][ 77::0] (10)

+{A,1 A b][ v"] +e;
Uy

In a more compact form we have :

yi= AyZgr+ Aoty +e; an

where

A():[Aw‘ Ab],z=[z()ij 0

)
,,:[ ”0] i uj:;:[ Ui;]
T Vs,

The model equation (11) subsumes as a
special case the hierarchical linear model
(Raudenbush, 1988) :

Y=A101+A202+E, 02 ""N(O. T),E "'N(O.IP-)
(12)

Based on this general model (12) we

develop the empirical Bayes estimation
procedure in section 3. In our structural
equation model, we consider a population of
n level-one units, indexed j (group) and i
(individual). Associated with each level-one
unit are three vector-valued variables v, z
and w. The values of the design variables,
z and w, are completely known for all
level-one units before observations are
carried out, but the values of the
endogenous variables, y (the four indicators
in our illustrative example), are not known
at all. Design variables are considered fixed
and known in our multilevel structural

equation models.

3. The EM Algorithm for
Maximum Likelihood Estimates

Rubin  (1977)
presented the EM algorithm as a general

Dempster, Laird and

iterative method for computing maximum
likelihood estimates in the presence of
incomplete data or missing data. Wu (1983)

-76_



presented its properties of convergence,

viewing it as a special optimization
algorithnri. The EM algorithm is particularly
useful when analytic expressions exist for
the conditional expectation of the missing
data and for the likelihood

estimates of the model parameters given the

maximum

complete data.

Through casting the measurement model
and the reduced form of the structural
equation for latent variables into the general
model, we can conceptualize our problem as
having complete data and incomplete data.

Given

vi= A+ Ayt e;
7= Zymy t vy (13)
75= Wiy +vy

We have ® :{ A wo A bs 2’ Tﬂh' Tﬂ} is

the set of parameters.

Yoss =1V, Zij, Witis the set of observed
data.

Vuis = LTy, Ty, Vijy Vs €5}is  the  set  of
missing data.

€={Vus, Ymis}is the set of complete data.

Note that in the multilevel structural
equation model the factor loadings are
parameters rather than observed predictors.

The joint probability density function of

the complete data is given by :

R0y (2m) M| ™M
< exp [(—0.5) D TAy;— A Zim— Agw;) ]

Z _l(yij_Aoz;;ﬂ_ADWﬁ)]
x(2m) ™" exp [ (—0.5) T Z(vI T;'v,))

X (2m) T bl exp [ (—0.5) S0l Tiloy))
X h( m)

(14)

where r=the number of indicators, p=the

dimension of wv; and s=the dimension of

vy. The Prior density h{ x)is considered a

very small constant and it can be ignored
while the empirical Bayes estimators are
calculated (Dempster, Rubin & Tsutakawa,
1981).

From Dempster, Laird and Rubin (1977),
each iteration of the EM algorithm solves

S5 Q6,0 ™I, 1=0  for 6.

where

X6, 0 ™) = [ LIOOAT pid Vo, 0= 6V s,

and
) (m) _ { Aé”‘),Z(”‘), Tyn)’ T,(ﬂ:n)}
The necessary posterior location vectors

(z*,vjvy), and  dispersion  matrix,

(D,,Dy,D,) of the random

vectors,

7, v, vy, follow from Raudenbush (1988,

Appendix A) :

Di=[ DAlw;'A;-
TAW Ay VAL Ay
SALE AV AT T A~
DALE AV ATE A~
DA AL VA AT

_77_



Dvii*= (AZTITE-'[AZI'I'-F T;l)_l
+H(ALE " Ayt T,V ATE Ay VA " Ags
X (AZ,Z -1A2,‘,‘+ T”_l) -1

Di=[ Z(AHZ A+ T, —
S(AHT A ALD
x (A2 A1

_1A3ii+ T;l)—l

Cro,=—DWALS A AT A+ T ™

where, A= Ay, T,g=[T" 0

0 7,
These posterior  distributions  given
parameters provide point estimates and

intervals needed for inference about the
random vectors.
To find the ML estimates, we have to

e, by

taking its first derivatives with respect to
Tﬂy Tr],; Zr AO:

maximize the function

(1) X80T __ Npprip(7;h]
ki
LSS0 2 Buplly=5.0"T7" - (15

D{T;'"ECvpllY=15,0 ") T; 11
where D means a diagonal matrix
(Grayhill, 1983). Thus D(T) is a diagonal
matrix with i-th diagonal equal to the i-th
diagonal element of a matrix T. Setting the
derivative equal to null matrix and solving
gives the complete-data ML estimate
(Press, 1982; Magnus and Neudecker, 1986).

Then the complete-data ML estimate is :

= LIS+ (D)7 a8

(Z);@_J__l

~LtaT -XT 1+

% 2T E(vwil Y=y3,0") T -

DT E ool Y=y, 0" T;}1 (7

Setting the derivative equal to null matrix
and solving gives the complete-data ML
estimate. Then the
estimate is :

Ty= [ZZ(v"’"’v;}""T+(Dv,>'('">)] (18)

complete-data ML

3

(m)
dg@dz,@ ! ?=[_g[22—l_l)(2—l)]+

LSS5 Beelv=5.0")5" -
DIZ ' E(eze; ) Y=,0")27]]]xe;

(19)
where e, is the column indicator vector
which has a 1 in the r-th position and

Setting  the
derivative equal to zero and solving gives

zeros in other positions.

the complete-data ML estimate.

S = Diagonal(63, &%, &3, 03) (20)

dQ( 6.6 dAy)
d(AoT) dagk

(4) By setting equal

to zero and solving gives the complete-data

ML estimate, /\/g;.
Then, Ap={[Au] 21
The element /1;1 is in the g-th row and

k-th column of the matrix 71\() and zeros

elsewhere.
In sum the E-steps and M-steps are :
(1) E-step : Find
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Elog[L(c, ©)ly, T{™]

M~step

’

Substitute the equation (16)
with these quantities, and then we obtain
new

T, set T{™*Y equal to this new T,
(2) E-step : Find |

Elog[L(c, @)ly, T$]
M-step Substitute the equation (18)

with these quantities, and then we obtain
new

T, set T equal to this new T,
(3) E-step : Find
Elog[L(c, 0)ly,Z™]

Substitute the equation (20)
with these quantities, and then we obtain

M-step

new
3, set Z"™*Vequal to this new 3.
(4) E-step : Find

7T, w7, D™, DE™, Ci®,  acting
o _ A4 (m)
as it Ag= Ay

M-step Substitute the equation (21)
with these quantities, and then we obtain

new

Ag. set A§™*Y equal to this new A,

Then here the first iteration of the E and

M step is completed. This algorithm

proceeds until some user-specified
termination criteria are met. For example,
the algorithm might terminated when the
log likelihood of successive iterates differ

from each other by no more than some
107%.

section with the expression for the observed

number (e, = I conclude this

log ~likelihood function. Monitoring

convergence of the algorithm and making

likelihood ratio test monitored are done by
computing the observed data log likelihood
on each iteration, which is given by

LLR(6ly) =4 10g(dets)— Y tog (detT,)
— £ 1og (det T, + 1 108 (dervy)

+ % log (det@y) + 5 log (detU;™)
—Z X[y vy Ayr — Agyw))]

4. Numerical Results

The output of the Table 2 is the result
of fitting unbalanced data to the model. The
distribution of the number of groups per
group size is given in Table 1.
subroutine (Jo, 1993)
hierarchical data, one

By a
generating for
sample of 4890
observational units is created for this study.
The focus of investigation is in discovering
and testing the estimates of parameters are
close to the predetermined population

parameters within some what sampling

error.

Group size Unbalanced data

10
10
10
20
10 450

[{olNe BN Sl e)]

Table 1 Number of Groups per Group Size

_79..



Yi
Y2
Y3
Y4

Mean st. dev.
-0.285 7.805
~-0.187 6.533
-0.167 7.957
-0.160 6.041

Sample covariance matrix
60.922

40.477 42.686

16.370 13.360 63.309
10,376 8.746 35.342 36.492

Table 2 Descriptive Statistics for Sample

In discussing the results reported in Table
3 and Table 4, we say that the EM
algorithm recovered the population
parameters values fairly well. The criterion
used for convergence of the observed
log-likelihood 1is that the difference of
(i-1)th log-likelihood and i-th log-likelihood

Population Starting Estimated
Parameters Values Parameters
A w 0.82 0.582 0.85592
A 0.73 0573 0.71902
An 0.75 0575 0.73673
A 0.66 0.753 0.6337
to 30.00 20.000 32.71043
Ly 10.00 7.000 10.53190
tye 30.00 20.000 32.54095
Lo 20.00 24.010 22.70168
tons 4.00 3.000 3.69027
frne 20.00 25.000 22.83989
o 10.00 8.00 7.81079
o 10.00 8.000 11.09361
o 12.00 9.000 10.24275
o 12.00 9.000 13.10782
@ 0.33 0.200 0.31947
ay 0.30 0.150 0.25065
8, 0.20 0.150 0.29023
Bs 0.10 0.500 0.13452
Bs 0.25 0.150 0.74056
Bs 0.30 0.200 0.10906
B 0.25 0.150 0.47312
Bi 0.30 0.200 0.27258

Table 3 Parameter estimates for unbalanced data
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(0.1)6 , that is, (8 <
(0.D"). In the 486 IBM-PC with the speed

of 66 mhz for convergence it took about
875 hours. The Table 4 shows the list of
log-likelihood values. As the table shows

is smaller than

the number of iterations is very large and
the spent hours is quite long. This seems
to be caused by the fact that missing
information is relatively large in the

multileve] structural equation model.

Iteration 1019 -23905.70543
Iteration 1020 -23905.70516
Iteration 1021 -23905.70488
Iteration 1022 -23905.70461
Iteration 1023 -23905.70434
Iteration 1024 -23905.70407

Table 4 The Values of the Observed
Log-likelihood

5. Conclusion

Research in the field of social science
provides various challenges. For example,
the random assignment of individuals to a
set of conditions is not realistic in most
cases. Even an experimental setting
(Lumsdaine, 1963) the outcomes may show
intracluster correlations due to the fact that
(1) students do not receive their instruction
individually but in groups, (2) interactions
exist between treatments and students. This

situation makes the application of the

conventional linear

structural  equation
models to the real data inappropriate. As
Cronbach(1976) pointed out, due to by not
recognizing the nature of hierarchical data,
many studies in the field of education have
used inappropriate analyses. The difficulty
of analyzing data arising from two levels is
in assessing the nature of intervariable
relationships at both levels simultaneously.
This paper has shown how multilevel

structural  equation models can  be
formulated for hierarchical data and how
they can be analyzed by using empirical
Bayes with the EM algorithm.

One of the potential fields to which the

mutilevel model s

structural equation
extended is the model where the slope for
the exogenous variables varies randomly
across groups. Note that there are

numerous settings in  which multilevel
structural equation models consisting of
random slopes of exogenous variables are
needed in order to represent adequately the
variance-covariance structure of the data.
Thus, for example, the gender gap in the
SAT mathematics test scores can be
explained by the group-level characteristics.
The approach presented here can be
generalized to iIncorporate random slopes.
As is well known, the EM algorithm is
numerically stable, but is slow. Recently
Jamshidian and Jennrich (1993) developed a
conjugate gradient scheme for accelerating.
In that case the evaluation of the gradient
of the likelihood function is essential. In the
case of small number of gfoups one can
employ the full Bayesian approach can be

implemented with Gibbs sampler algorithm.
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