ISSN : 1225-3480
큰가리비 치패의 대체 먹이원을 개발하기 위해 각기 다른 먹이원을 공급하여 성장, 생존율 및 체내 조성을 조사하였다. 생존율은 PTE + PHY 실험구에서 90.0%로 가장 높게 나타났다. 각장과 각고는 PHY에서 가장 높게 나타났으나 PTE +PHY 실험구와의 유의적인 차이는 없었다. 반면, PTE와 OTE 단독구는 유의적으로 가장 낮게 나타났다. 한편, 각폭 및 전중량도 동일한 경향을 보여 PHY 단독 실험구와 PTE+PHY 혼합 실험구에서 유의적으로 가장 높게 나타난 반면 PTE와 OTE 단독구는 가장 낮은 값을 보였다. 한편, 체내 지방산 분석에서 DHA 함량은 기존 먹이인 미세조류 단독 실험구 (PHY) 와 경제적인 먹이원인 INS 실험구에 비해 지질강화원인 PTE와 OTE가 혼합된 실험구에서 더욱 높은 것으로 나타났으며, 이러한 높은 값에 기인하여 n-3 PUFA도 높았다. 또한, 총 단백질 함량은 주요 단백질원인 PHY와 INS가 들어간 실험구가 55.5-65.2%의 함량을 보인반면 지질영양강화원만 들어간 PTE, OTE 단독 실험구는 각각 44.8%, 47.0%로 가장 낮은 함량을 나타내었다. 필수아미노산 함량도 동일한 경향을 보여 단순 지질강화원 실험구에서는 낮았다. 한편, 체내 핵산 분석에서 RNA 값은 PHY 단독 실험구와 PTE+PHY 혼합구에서 0.76으로 가장 높게 나타났으나 PTE, OTE 단독구는 각각 0.35, 0.32로 가장 낮게 나타났다. DNA 값도 PHY 단독 실험구와 PTE + PHY 혼합구에서 3.95으로 가장 높게 나타난 반면 PTE, OTE 단독구는 유의적으로 가장 낮았다. 이러한 경향에 의해 RNA/DNA ratio 값도 PHY와 INS가 들어간 단독구와 몇몇 혼합구가 PTE와 OTE 단독구 보다 높았다. 이상의 결과를 통해서 미세조류 단독 공급구인 PHY에 PTE를 혼합해 준 PTE+PHY 혼합 공급구는 큰가리비 치패의 성장, 생존율 및 체내 조성을 향상시켜 주는 것으로 나타났다. 본 실험을 통해 새롭게 대체 개발된 PTE+PHY 혼합구는 이매패류 양식에서 차지하는 미세조류 생산비용의 절감 효과를 기대해 볼 수 있는 것으로 경제적인 측면에서 매우 유용한 결과라 할 수 있다.
큰가리비 치패의 대체 먹이원을 개발하기 위해 각기 다른먹이원을 공급하여 성장, 생존율 및 체내 조성을 조사하였다. 생존율은 PTE + PHY 실험구에서 90.0%로 가장 높게 나타났다. 각장과 각고는 PHY에서 가장 높게 나타났으나 PTE +PHY 실험구와의 유의적인 차이는 없었다. 반면, PTE와OTE 단독구는 유의적으로 가장 낮게 나타났다. 한편, 각폭및 전중량도 동일한 경향을 보여 PHY 단독 실험구와PTE+PHY 혼합 실험구에서 유의적으로 가장 높게 나타난반면 PTE와 OTE 단독구는 가장 낮은 값을 보였다. 한편, 체내 지방산 분석에서 DHA 함량은 기존 먹이인 미세조류 단독 실험구 (PHY) 와 경제적인 먹이원인 INS 실험구에 비해 지질강화원인 PTE와 OTE가 혼합된 실험구에서 더욱 높은 것으로 나타났으며, 이러한 높은 값에 기인하여 n-3PUFA도 높았다. 또한, 총 단백질 함량은 주요 단백질원인PHY와 INS가 들어간 실험구가 55.5-65.2%의 함량을 보인반면 지질영양강화원만 들어간 PTE, OTE 단독 실험구는 각각 44.8%, 47.0%로 가장 낮은 함량을 나타내었다. 필수아미노산 함량도 동일한 경향을 보여 단순 지질강화원 실험구에서는 낮았다. 한편, 체내 핵산 분석에서 RNA 값은 PHY 단독 실험구와PTE+PHY 혼합구에서 0.76으로 가장 높게 나타났으나PTE, OTE 단독구는 각각 0.35, 0.32로 가장 낮게 나타났다. DNA 값도 PHY 단독 실험구와 PTE + PHY 혼합구에서3.95으로 가장 높게 나타난 반면 PTE, OTE 단독구는 유의적으로 가장 낮았다. 이러한 경향에 의해 RNA/DNA ratio 값도 PHY와 INS가 들어간 단독구와 몇몇 혼합구가 PTE와OTE 단독구 보다 높았다. 이상의 결과를 통해서 미세조류 단독 공급구인 PHY에PTE를 혼합해 준 PTE+PHY 혼합 공급구는 큰가리비 치패의 성장, 생존율 및 체내 조성을 향상시켜 주는 것으로 나타났다. 본 실험을 통해 새롭게 대체 개발된 PTE+PHY 혼합구는이매패류 양식에서 차지하는 미세조류 생산비용의 절감 효과를 기대해 볼 수 있는 것으로 경제적인 측면에서 매우 유용한결과라 할 수 있다.
Berntsson, K. M., Jonsson, P. R., Wangberg, S. A. and Carlsso,n A. S. (1997) Effects of broodstock diets on fatty acid composition, survival and growth rates in larvae of the European flat oyster, Ostrea edulis. Aquaculture, 154: 139-153.
Coutteau, P. and Sorgeloos, P. (1993) Substitute diets for live algae in the intensive rearing of bivalve mollusks a state of the art report. World Aquacult, 24: 45-52.
Ducan, D. B. (1955) Multiple-range and mutiple F tests. Biometrics, 11: 1-42.
Enright, C. T., Newkirk, G. F., Craigie, J. S. and Castell, J. D. (1986) Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J. Exp. Mar. Biol. Ecol., 96: 1-13.
Feindel, S. C. (2000) Optimization of hatchery culture of the sea scallop, Placopecten magellanicus (Gmelin, 1791): Dietary lipid quality and fatty acid requirements. MSc. Thesis, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.
Fukuda, M., Sako, H., Shigeta, T. and Shibata, R. (2001) Relationship between growth and biochemical indices in laboratory reared juvenile Japanese flounder and its application to wild fish. Mar. Sci., 138: 47-55.
Hall, J. M., Parrish, C. C. and Thompson, R. J. (2002) Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull., 202: 201-203.
Hendriks, I. E., van Duren, L. A. and Herman, P. M. J. (2003) Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. J. Exp. Mar. Bio. Eco., 296: 199-213.
Kimura, R., Watanabe, Y. and Zenitani (2000) Nutritional condition of first-feeding larvae of Japanese sardine in the coastal and oceanic water along the Kuroshio Current. J. Mar. Sci., 57: 240-248.
Langdon, C. J., and Waldock, M. J. (1981) The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Assoc. U.K., 61: 431-448.
Marty, Y., Delaunay, F., Moal, J. and Samain, J. F. (1992) Changes in fatty acid composition of Pecten maximus (L.) during larval development. J. Exp. Mar. Biol. Ecol., 163: 221-234.
Milke, L. M., Bricelj, V. M. and Parrish, C. C. (2004) Growth of postlarval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids. Aquaculture, 234: 293-317.
Morrison, W. R. and Smith, L. M. (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J. Lipid Res., 5: 600-608.
Naidu, K. S. (1991) Sea scallop, Placopecten magellanicus. In: Shumway, S.E. (Ed.), Scallops: Biology, Ecology, and Aquaculture. Elsevier, New York, pp. 861-898.
Park, J. C, Lee, B. I. and Kwon, O. N. (2011) Effect on Enrichment with Schizochytrium sp. and squid Todarodes pacificus liver oil on fatty acid content of live feed. Kor. J. Fish. Sci., 44: 339-344.
Park, Y. J., Rho, S. and Lee, C. S. (2001) Growth of the scallop, Patinopecten yessoensis in suspended culturein the east coast of Korea. J. Aquaculture, 14: 181-195 〔in Korean〕.
Parrish, C. C. (1987) Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can. J. Fish. Aquatic. Sci., 44: 722-731.
Peragón, J., Barroso, J. B., García-Salguero, L., de la Higuera, M., Lupiáñez, J. A. (2001) Growth, protein-turnover rates and nucleic-acid concentrations in the white muscle of rainbow trout during development. Internation J. Biochem Cell. Biol., 22: 1227-1238.
Rhodes, E. W. and Widman, J. C. (1980) Some aspects of the controlled production of the bay scallop (Argopecten irradians). Proc. World Maricult. Soc., 11: 235-246.
Sinensky, M. (1974) Homeoviscous adaptation-a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A., 71: 522-525.
Soudant, P., Marty, Y., Moal, J., Masski, H. and Samain, J. F. (1998) Fatty acid composition of polar lipid classes during larval development of scallop Pecten maximus. Comp. Biochem. Physiol. 121A: 279-288.
Waldock, M. J. and Holland, D. L. (1984) Fatty acid metabolism in young oysters. Crassostrea gigas: polyunsaturated fatty acids. Lipids, 19: 332-336.
Whyte, J. N. C, Bourn, N and Hodgson, C. A. (1989) Influence of algal diets on biochemical composition and energy reserves in Patinopecten yessoensis (Jay) larvae. Aquaculture, 78: 333-347.
Wilson, J. H. (1987) Enviromental parameters controlling growth of Ostrea edulis L. and Pecten maximus L. in suspended culture. Aquaculture, 64: 119-131.