ISSN : 1225-3480
일산화질소 (NO) 는 면역계에서 세포내 외의 신호전달에 관여하는 물질로 생물의 생리적, 병리학적 기작을 조절한다. 본 연구는 바지락 혈구의 NO 농도 측정을 위해 4,5-diaminofluorescein diacetate (DAF-2 DA) 를 이용한 DAF assay의 적용이 가능한지 확인하고자 화상분석법, 형광흡광도 측정법 및 유세포분석 기법 등을 이용하였다. 연구결과 인위적인 바지락 혈구의 NO 생성을 위해 L-arginine을 첨가한 경우 대조구에 비하여 NO 생성이 유의적으로 증가하였고, 반대로 NO 저해제인 L-NAME를 첨가한 경우 NO 생성은 급격히 감소하였다. 이러한 결과는 본 조사에 이용된 화상분석법, 형광흡광도 측정법 및 유세포분석 기법 등 모든 조사 방법에서 동일하게 확인되었다. 특히 3가지 측정 방법 중 유세포 분석법은 측정의 신속성, 신뢰성 및 정확성을 담보할 수 있는 유용한 방법으로 판단된다. 따라서 유세포 분석기를 이용한 NO 측정은 향후 바지락의 생리적 병리적 특성을 확인하는데 유용한 마커로써 이용될 수 있을 것으로 기대된다.
일산화질소 (NO) 는 면역계에서 세포내·외의 신호전달에관여하는 물질로 생물의 생리적, 병리학적 기작을 조절한다. 본 연구는 바지락 혈구의 NO 농도 측정을 위해4,5-diaminofluorescein diacetate (DAF-2 DA) 를 이용한DAF assay의 적용이 가능한지 확인하고자 화상분석법, 형광흡광도 측정법 및 유세포분석 기법 등을 이용하였다. 연구결과인위적인 바지락 혈구의 NO 생성을 위해 L-arginine을 첨가한 경우 대조구에 비하여 NO 생성이 유의적으로 증가하였고,반대로 NO 저해제인 L-NAME를 첨가한 경우 NO 생성은급격히 감소하였다. 이러한 결과는 본 조사에 이용된 화상분석법, 형광흡광도 측정법 및 유세포분석 기법 등 모든 조사 방법에서 동일하게 확인되었다. 특히 3가지 측정 방법 중 유세포분석법은 측정의 신속성, 신뢰성 및 정확성을 담보할 수 있는유용한 방법으로 판단된다. 따라서 유세포 분석기를 이용한NO 측정은 향후 바지락의 생리적·병리적 특성을 확인하는데유용한 마커로써 이용될 수 있을 것으로 기대된다.
Aktan, F. (2004) iNOS-mediated nitric oxide production and its regulation. Life Sciences, 75: 639-653.
Allam, B., Paillard, C. and Ford, S.E. (2002) Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Diseases of Aquatic Organisms, 48: 221-231.
Araya, M.T., Siah, A., Mateo, D.R., Markham, F., McKenna, P., Johnson, G.R. and Berthe, F.C.J. (2009) Morphological and molecular effects of Vibrio splendidus on hemocytes of softshell clams. Mya arenaria. Journal of Shellfish Research, 28: 751-758.
Auffret, M. and Oubella, R. (1997) Hemocyte aggregation in the oyster Crassostrea gigas: In vitro measurement and experimental modulation by xenobiotics. Comparative Biochemistry and Physiology Part A: Physiology, 118: 705–712.
Bevers, L. (2006) Activity of endothelial nitric oxide synthesis: substrate, modulators and products. Ph.D. thesis, pp. 31-35, Universiteit Utrecht, The Netherlands.
Bogdan, C. (2001) Nitric oxide and the immune response. Nature Immunology, 2: 907-916.
Bayne, C.J. (1983) Molluscan immunobiology. In; The Mollusca, Vol. 5, Physiology. (ed by Saleuddin, A.S.M. and Wilbur K.M.). pp. 407–486. Academic Press, New York
Bryan, N.S. and Grisham, M.B. (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine, 43: 645–657.
Cattell, V. and Jansen, A. (1995) Inducible nitric oxide synthase in inflammation. The Histochemical Journal, 27: 777-784.
Cirino, G., Distrutti, E. and Wallace, J. (2006) Nitric oxide and inflammation. Inflammation and Allergy Drug Targets, 5: 115-119.
Clancy, M.C., Amin, A.R. and Abramson, S.B. (1998) The role of nitric oxide in inflammation and immunity. Arthritis and Rheumatism, 41: 1141-1151.
Ferreira, T. and Rasb, W.S. (2012) Image J User Guide - IJ 1.46r, imagej.nih.gov/ij/docs/guide/
Gagné, F., André, C., Cejka, P., Hausler, R., Fournier, M. and Blaise, C. (2008) Immunotoxic effects on freshwater mussels of a primary-treated wastewater before and after ozonation: a pilot plant study. Ecotoxicology and Environmental Safety, 69: 366-373.
Gagne, F., Berube, E., Fournier, M. and Blaise, C. (2005) Inflammatory properties of municipal effluents to Elliptio complanata mussels - lack of effects from anti-inflammatory drugs. Comparative Biochemistry and Physiology, 141(C): 332 – 337.
Imamura, M., Yang, J. and Yamakawa, M. (2002) cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori. Insect Molecular Biology, 11: 257-265.
Jeffroy, F. and Paillard, C. (2011) Involvement of nitric oxide in the in vitro interaction between Manila clam, Ruditapes philippinarum, hemocytes and the bacteriumVibrio tapetis. Fish and Shellfish Immunology, 31: 1137-1141.
Kolluru, G.K., Tamilarasan, K.P., Geetha Priya, S., Durgha, N.P. and Chatterjee, S. (2006) Cadmium induced endothelial dysfunction: Consequence of defective migratory pattern of endothelial cells in association with poor nitric oxide availability under cadmium challenge. Cell Biology International, 30: 427-438.
Lewis, S.E.M., Donnelly, E.T., Sterling, E.S.L., Kennedy, M.S., Thompson, W. and Chakravarthy, U. (1996) Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility. Molecular Human Reproduction, 2: 873-878.
Menaka, K.B., Ramesh, A., Thomas, B. and Kumari, N.S. (2009) Estimation of nitric oxide as an inflammatory maker in periodontitis. Journal of Indian Society of Periodontology, 13: 75-78.
Nakatsubo, N., Kojima, H., Kikuchi, K., Nagoshi, H., Hirata, Y., Maeda, D., Imai, Y., Irimura, T. and Nagano T., (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Letters, 427: 263-266.
Palmer, R.M. J., Ferrige, A.G. and Moncadab, S. (1987) Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor. Nature, 327: 524-526.
Raghavan, S.A.V., Sharma, P. and Dikshit, M. (2003) Role of ascorbic acid in the modulation of inhibition of platelet aggregation by polymorphonuclear leukocytes. Thrombosis Research, 110: 117–126.
Taffala, C., Gomez-Leon, J., Novoa, B. and Figueras, A. (2003). Nitrite oxide production by carpet shell calm (Ruditapes decussatus) hemocytes. Developmental and Comparative Immunology, 27: 197-205.
Viani, P., Giussani, P., Ferraretto, A., Signorile, A., Riboni, L. and Tettamanti, G. (2001) Nitric oxide production in living neurons is modulated by sphingosine: a fluorescence microscopy study. FEBS Letters, 506: 185-190.
Yamasaki, H. and Sakihama, Y. (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Letters, 468: 89-92.