바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

수온에 따른 지중해담치 (Mytilus galloprovincialis; Bivalvia) 의 여과율과 섭식율 변동

The Influence of Water Temperature on Filtration Rates and Ingestion Rates of the Blue Mussel, Mytilus galloprovincialis (Bivalvia)

초록

본 연구는 먹이생물의 종류와 서식 위치 (패각 크기)에 따라서 지중해담치의 여과율이 수온에 따라 어떻게 변동하는 지를 알아보고자 하였다. 실험에 사용된 먹이생물은 Isochrysis galbana, Chaetoceros didymus and Prorocentrum dentatum의 3 종류이다. 지중해담치의 크기 (각고)는 중부조간대 상부 지역 (+ 5 cm MSL)에 서식하는 개체가 중부조간대 하부지역 (- 58 cm MSL)에 서식하는 개체보다 월등히 작았다. 지중해담치의 여수율과 섭식율은 먹이생물의 종류에 상관없이 중부조간대 상부에 서식하는 지중해담치가 중부조간대 하부에 서식하는 지중해담치보다 높은 값을 보였다. 전반적으로 수온에 따른 여수율과 섭식율 변동은 동일한 변동 양상을 보였다. 즉 수온이 상승함에 따라서 여수율과 섭식율도 증가하다가, 수온 <TEX>$20-25^{\circ}C$</TEX> 정도에서 최대값을 보이며, 이 후 점차 감소하는 경향을 보였다. 다항회귀분석식에서 추정한 최대 여수율과 섭식율을 보이는 이론적 적정 수온 역시 <TEX>$20-25^{\circ}C$</TEX>의 범위내로 나타났다. 먹이생물의 종류에 따라서는 여수율과 섭식율이 약간 다른 변동을 보였다. 대체적으로 여수율과 세포수 기준 섭식율은 지중해담치의 서식위치 (조고)나 먹이생물의 종류에 상관없이 거의 유사한 경향을 보였다. 반면에 탄소함량 기준 섭식율의 경우 먹이생물이 P. dentatum일 경우가 I. galbana나 C. didymus일 경우 보다 월등히 높은 값을 보였다.

keywords
filtration rate, clearance rate, ingestion rate, water temperature, food organism, tidal elevation, Mytilus galloprovincialis

Abstract

This study was performed to describe the influence of temperature on the clearance rate and ingestion rate of the blue mussel, Mytilus galloprovincialis with three food organisms and habitat location (shell size) of mussel. Food organisms used in this experiments were Isochrysis galbana, Chaetoceros didymus and Prorocentrum dentatum. The size of mussels inhabiting higher midlittoral zone was smaller than those of lower midlittoral zone. Regardless of the kind of food organisms, filtration rates and ingestion rates of higher midlittoral mussels were higher than those of lower midlittoral mussels in experiment temperature conditions. The variation of filtration rate and ingestion rate showed same tendency with temperature. Filtration rates and ingestion rates increased with temperature, and recorded maximum values at 20-25℃ of temperature, and thereafter decreased gradually. Theoretical optimum temperatures showing maximum filtration rates and ingestion rates estimated from polynomial regression curves were also in the range of 20-25℃. Blue mussels showed different variation of filtration rate and ingestion rate with the kind of food organisms. Filtration rates and ingestion rate based on cell number were similar regardless of habitat location(tidal elevation) and food organisms. Ingestion rates based on carbon content showed very high values in case of P. dentatum beside I. galbana and C. didymus as food organism.

keywords
filtration rate, clearance rate, ingestion rate, water temperature, food organism, tidal elevation, Mytilus galloprovincialis

참고문헌

1.

Ali, R.M. (1970) The influence of suspension density, temperature on the filtration rate of Hiatella arctica. Marine Biology, 6: 291-302.

2.

Asmus, R.M., Asmus, H. (1993) Phytoplanktonmussel bed interactions in intertidal ecosystems. In:Richard F. Dame.(ed.) Bivalve filter feeders in estuarine, costal ecosystem processes. NATO, A.S.I. Series, Vol. G33. Springer-Verlag, Berlin, 57-84.

3.

Boltvoskoy, D., Izaguirre I., Correa, N. (1995)Feeding selectivity of Corbicula fluminea (Bivalvia)on natural phytoplankton. Hydrobiologia, 312:171-182.

4.

Bricelj, V.M., Shumway, S. (1991) Physiology:Energy acqiusition, utilization. In: Scallops:Biology, Ecology, Aquaculture. Developments in Aquaculture, Fisheries Science. (ed. by Shumway, S.E.). pp. 305-346. Vol. 21, Elsevier Science Publishers.

5.

Clarke, A. (1998) Temperature, energetics: An introduction to cold Ocean Physiology. In: Cold ocean physiology. (ed. by Playle, R.C). pp. 3-30. Cambridge University Press, Cambridge.

6.

Cloernm, J.E. (1982) Does the Benthos Control Phytoplankton Biomass in South San Franciso Bay? Marine Ecology Progress Series, 9: 191-202.

7.

Comesana, A.S., Posada, D., Sanjuan, A. (1998). Mytilus galloprovincialis Lmk. in nothern Africa. Journal of Experimental Marine Biology, Ecology, 223: 271-283.

8.

Coughlan, J. (1969) The estimation of filtering rate from the clearance of suspensions. Marine Biology, 2:356-358.

9.

Dame, R.F. (1996) Ecology of marine bivalves: An ecosystem approach. pp. 254. CRC marine science series. CRC Press, Boca Raton.

10.

Fischer, H. (1988). Mytilus edulis as a quantitative indicator of dissolved cadmium. Final study, synthesis. Marine Ecology Progress Series, 48:163-174.

11.

Foster-Smith, R.L. (1975) The effect of concentration of suspension on the filtration rates, pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.), Venerupis pullastra. Journal of Experimental Marine Biology, Ecology, 17: 1-22.

12.

Fuentes, J., Reyero, I., Zapata, C., Alvarez, G. (1994)Production traits of the mussel Mytilus galloprovincialis cultured in Galicia (NW of Spain):relative effects of source of seed, growing environment. Aquaculture, 122: 19-31.

13.

Guillard, R.R.L. (1983) Culture of phytoplankton for feeding marine invertebrates. In: Carl J. Berg, Jr(ed.), Culture of marine invertebrates-selected readings. pp. 108-132. Hutchinson Ross Publishing Company. Stroudsburg, Pennsylvania.

14.

Guillard, R.R.L., Ryther, J.H. (1962) Study of marine planktonic diatoms. 1, Cyclotella nana Hustedt, Detonulla confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8: 229-239.

15.

Han, H.s., Ma, C.W., Kim, J.Y. (2012) Growth patterns of the Manila clam, Ruditapes phillipinarum at each tidal level in the intertidal zone in Tae-an, west coast of Korea. Korean J. Malacol., 28: 29-35.

16.

Hra-Brenko, M. (1973) The study of mussel larvae, their settlement in Vela Draga Bay (Pula, The Northern Adriatic Sea). Aquaculture, 2: 173-182.

17.

Hwang, S.J., Kim, H.S., Shin, J.K. (2001)Filter-feeding effect of a freshwater bivalve (Corbicula leana Prime) on phytoplankton. Korean Journal of Limnology, 34: 298-309.

18.

Hwang. S.J., Kim, H.S., Choi, K.H., Park, J.H., Shin, J.K. (2002) Comparison of filtering abilities of Korean freshwater bivalves, their filtering effects on water quality. Korean Journal of Limnology, 35:92-102. [in Korean]

19.

Je, J.G., Hong, J.S., Yi, S.K. (1988) A study on the fouling organisms in the pearl oyster culture grounds in the southern coast of Korea. Ocean Reaserch, 10:85-105.

20.

Johons, H.D. Richards, O.G., Southern, T.A. (1992)Gill dimensions, water pumping rete, body size in the mussel Mytilus edulis L. Journal of Experimental Marine Biology, Ecology, 155:213-237.

21.

Kang, J.W., Lee, S.S., Han, K.N. (2014) Clearance rate, feeding according to water temperature, salinity condition in the surf clam, Mactra veneriformis. Kor. J. Malacol., 30: 101-106. [in Korean]

22.

Kim, H.S, Park, J.H., Kong, D.S., Hwang, S.J. (2004). Water quality improvement with the application of filter-feeding bivalve (Corbicula leana Prime) in a eutrophic lake. Korean Journal of Limnology, 37: 332-343. [in Korean]

23.

Kim, H.Y. (1994) Live foods for the scallop (Partinopecten yessoensis) in the laboratory culture. Fisheries National Univerity of Pusan, M.S.Thesis, 69pp.

24.

Laing, I., Child, A.R. (1996) Comparative tolerance of small juvenile palourdes (Tapes decusstus L.), Manila clams (Tapes philippinarum Adams & Reeve)to low temperature. Journal of Experimental Marine Biology, Ecology, 195: 267-285.

25.

Lee. C.H., Song, J.Y., Chung, E.Y. (2003) Filtration of red tide dinoflagellates by intertidal bivalve, Glauconome chinensis Gray: An implication for the potentials of bivalves in tidal flats. J. Fish. Sci. Tech., 6: 66-73.

26.

Lee, C.H., Min. S.D., Sung, C.G. (2012) Filtration rates of juvenile purple clam, Saxidomus purpuratus (Sowerby) Feeding on red tide dinoflagellates. Korean J. Malacol., 28: 349-359.

27.

Lee, S.H., Lee, K.W. (1984) Heavy metals in mussels in the Korean coastal waters. Journal of the Korean Society of Oceanography, 19: 111-117. [in Korean]

28.

Lim, K.H., Jang, K.S., Kim, I.S., Lee, J.H., Shin, H.C. (2008) The Influence of water temperature, salinity on filtration rates of the hard clam, Meretrix petechialis.. Korean J. Malacol., 24: 175-188. [in Korean]

29.

Lim, K.H., Shin, H.C., Yang, J.S. (2005) the influence of water temperature, food concentration on the filtration rates of the Asiatic clam, Corbicula fluminea. Korean J. Malacol., 21:19-24.

30.

Martinez, J.C., Figueras A. (1998) Long-term survey on wild, cultured mussels (Mytilus galloprovincialis Lmk) reproductive cycles in the Ria de Vigo (NW Spain). Aquaculture, 162: 141-156.

31.

Numaguchi, K. (1994) Effect of water temperatue on the filtration rate of Japanese Pearl Oyster, Pinctada fucata martensii. Suisan Zoshoku, 42: 1-6. [in Japanese]

32.

Numaguchi, K., Tanaka, Y. (1986) Effects of temperature on mortality, growth of the spat of the pearl oyster, Pinctada fucata martensii. Bulletin of National Research Institute of Aquaculture, 9:35-39. [in Japanese]

33.

Nybakken, J.W. (2008) Marine Biology : An Ecological Approach. Addison-Wesley Edu. Pub.

34.

Okumuş, I., Başçinar, N., Özkan, M. (2002) The effects of phytoplankton concentration, size of mussel, water temperature on feed consumption, filtration rate of the Medeterranean mussel (Mytilus galloprovincialis Lmk). Turk. J. Zool., 26: 167-172.

35.

Riisgård, H.U. (1988) Efficiency of particle retention, filtration rate in 6 species of Northeast American bivalves. Marine Ecology Progress Series, 45:217-223.

36.

Saucedo, P.E., Ocampo, L., Monteforte, M.,, Bervera, H. (2004) Effect of temperature on oxygen consumption, ammonia excretion in the Calafia mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture, 229: 377-387.

37.

Schulte, E.H. (1975) Influence of algal concentration, temperature on the filtration Rate of Mytilus edulis. Marine. Biology, 30: 331-341.

38.

Shin, H.C., Lim, K.H. (2003) The influence of water temperature, salinity on the filteration rates of the short-necked clam, Ruditapes philippinarum. Korean J. Malacol., 19: 1-8. [in Korean]

39.

Shin, H.c., Lee, J.h., Jeong, H.J., Lee, J.S., Park, J.J., Lim, B.H. (2009) The Influence of water temperature, salinity on filtration rates of the Hard clam, Gomphina veneriformis (Bivalvia). Korean J. Malacol., 25: 161-172. [in Korean]

40.

Strathmann, R.R. (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology, Oceanography, 12: 411-418.

41.

Sylvester, F., Dorado, J., Boltovskoy, D., Juárez, Á., Cataldo, D. (2005) Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size, temperature. Hydrobiologia, 534: 71-80.

42.

Walne, P.R. (1979). Culture of bivalve molluscs; 50years' experience at Conwy. pp. 189. Farnham. Fishing News Books Ltd.

43.

Winter, J.E. (1969) Uber den einfluB der filtrierleistung und nahrungsausnutzung der muscheln Atctica islandica und Mobiolus modiolus. Marine Biology, 4: 87-135.

44.

Winter, J.E. (1978) A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture, 13: 1-33.

45.

Won, M.S. (1994) Seed production, environmental influence on productivity of the short-necked clam, Ruditapes philinarum. pp. 220. Ph.D. Thesis. National Fisheries University of Pusan. [in Korean]

46.

Yoo S.K., Lim, H.S., Chang, Y.J. (1990) On the occurrence of the larvae, spatfall, early growth of mussel Mytilus edulis, in Chinhae Bay. The Korean Journal of Malacology, 6: 1-10. [in Korean]

47.

윤성규, 홍재상, (1995) 해양생물학-저서생물, pp. 412. 아카데미 서적

48.

해양수산부 (2006) 전국 품종별 패류생산 통계(http://fs.fips.go.kr/index3_1.jsp).

logo