바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

먹이가용성에 의한 고성만의 굴 양식장 수용력

Estimation of Carrying Capacity by Food Availability for Farming Oysters in Goseong Bay, Korea

Abstract

For the continuous stable production of oyster, estimation of food availability (F) was carried out in Goseong Bay, south of coast Korea. Primary productivity ranged from 0.07 to 0.44 gC/m2/day (average 0.25 gC/m2/day), lowest in July and highest in January. The distribution of primary productivity at Goseong Bay showed the pattern of “high in the south and low in the north.” Food availability (F) was F ≤ 0, indicating insufficient food supply, from August to November and F > 0 from January to April. Continuous insufficient food supply was observed at 18 oyster farms in the southern part of the bay and 4 in its northern part. Mortality at the oyster farms was 56% on the average, and around 58% of death occurred during November when food supply was insufficient. The optimal population of cultured oyster per unit flow area was calculated to be 110-115 indiv./m2 (198-201 indiv./string). When the sea area was divided into 3 regions (A, B, C) according to carrying capacity, the carrying capacity of (A) regions was 52-53 indiv./m2 (93-95 indiv./string), (B) regions was 142-144 indiv./m2 (255-259 indiv./string), and (C) regions was 198-202 indiv./m2 (356-363 indiv./string). In particular, (A) regions showed extremely low productivity. For continuous stable oyster farming at Goseong Bay, it is necessary to control point and non-point source pollution through continuous environmental monitoring and to adjust harvest according to the base carrying capacity during the season of high water temperature.

keywords
Goseong Bay, Oyster farm, Food availability, Carrying capacity

참고문헌

1.

Bacher, C., P. Duarte, J.G. Ferreira, M. He'ral and O. Raillard. (1998) Assessment and comparison of the Marennes-Ole'ron Bay (France) and Carlingford Lough (Lreland) carrying capacity with ecosystem model. Aquatic Ecology, 31: 379-394.

2.

Cho, C.H., (1980) Farming Density of Oyster in Hansan-Geoje Bay. Bull. Korean Fish. Soc., 13(2):45-56.

3.

Hakanson, L., (2006) Suspended Particulate Matter in Lakes, Rivers, and Marine Systems. The Blackburn Press.

4.

Jeong, W.G., (1998) Studie on Proper Management of Oyster Farms in Pukman Bay, Korea. Ph.D. Thesis. Jeju University. pp. 14

5.

Jeong, W.G., J.D. Choi, Y.S. Kim, C.H. Cho and M.G. Yeom, (1999) Studies on Proper Management of Oyster Farms in Pukman Bay, Korea. (1) The characteristics of Water and Sediments. J. Ins. Marine Industry, 12: 83-93.

6.

Jeong, W.G., S.M. Cho and C.H. Cho, (1999) Suspended Time Dependent Meat Weiht Increase of Oysters, Crassostrea gigas, in Pukman Bay, Korea. 1999. Korean Journal of Malacology, 15(1): 41-47.

7.

Jeong, W.G. and S.M. Cho, (2003) The Physiochemical Characteristics of Seawater and Sediment of Marine Shellfish Farm in Jindong Bay. Korean Journal of Malacology, 19(2): 161-169.

8.

Kang, C.K., M.S. Park, P.Y. Lee, W.J. Choi and W.C. Lee, (2000) Seasonal variations in condition, reproductive activity and biochemocal composition of the Pacific Oyster, Crassostrea gigas (Thunberg), in suspended culture in two coastal bays of Korea. J. Shellfish Res., 19: 771-779

9.

Kim, Y.S., (1980) Efficiency of energy transfer by a population of the farmed Pacific Oyster, Crassostrea gigas in Geoje-Hansan Bay. Bull. Korean Fish. Soc., 13: 179-193 (in Korean)

10.

Kim, Y.S., (2003) Aquatic Production. Gyeongsang National University.

11.

Kusuki, Y., (1977) Fundamental studies on the deterioration of oyster growing grounds. (Ⅱ) Organic content of faecal materials. Bull. Jpn. Soc. Sci. Fish., 43: 167-171.

12.

Lee W.J., N.J. Park, J.H. Noh, J.D. Lee, R.G. Jang, M. Chang and Y.H. Yoon, (2004) Temporal and Spatial Distribution of Phytoplankton in Gwangyang Bay. Environmental Research Institute. Kyungnam Univ., 27: 105-127.

13.

Lee, B.D., H.K. Kang and Y.J. Kang, (1991) Primary Production in Oyster Farming Bay. Bull. Korean Fish. Soc., 24(1): 39-51.

14.

Lee, J.H., (1992) Marine Biology. Donghwa Technology Publishing, Donghwa Technology. 265pp

15.

MOMAF (Ministry of Maritime Affairs and Fisheries), (2001) Development of Optimal Technology for Sustaining Prodiction in Shellfish Farm. 543pp. (in Korean)

16.

Odum, E.P, (1971) Fundamentals of Ecology (3rd edition). Saunders, Philadelphia. 574 pp.

17.

Oh, S.J., J.S. Lee, J.S. Park, I.H. Noh and Y.H Yoon. (2008) Environmental Factor on the Succession of Phytoplankton Community in Jinju Bay, Korea. Journal of the Korean Society for Marine Environmental Engineering, 11(2): 98-104.

18.

Oyster Hanging Culture Fisheries Cooperatives, (2008)Annual Report (1996-2008).

19.

Park, Y.C. and K.S. Choi, (2002) Growth and Carrying Capacity of Pacific Oyster, Crassostrea gigas, in Kamak Bay, Korea. J. Korean Eviron. Biol., 20(4):378-385.

20.

Pazos, A.J., G. Roman, C.P. Acosta, M. Abad and J.L Sanchez, (1997) Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. J. Exp. Mar. Biol. Ecol., 211: 169-193.

21.

Rodhouse, P.G., C.M. Roden, G.M. Burnell, M.P. Hensey, T. Mc Mahon, B. Ottway and T.H. Ryan, (1984)Food resource, gametogenesis and growth of Mytilus edulis on the shore and in suspended culture;Killary Harbour, Ireland. J. Mar. Assoc. U.K, 64:513-529.

22.

Rowan, K.S. (1989) Photosynthetic Pigments of Algae. Cambridge. University Press, Cambridge. 344pp.

23.

Steemann-Nielsen, E., (1975) Marine Photosynthesis with Special Emphasis on the Ecological Aspects. Elsevier Scientific Publishing Company Amsterdam. 141p.

24.

Sugawara, Y. and K. Okoshi, (1991) An important problem for oyster farming in enclosed coastal waters. Mar. Pollut. Bull., 22: 271-274.

25.

경상남도, (1997) 경상남도 특별관리어장 정화사업 기본조사 및실시설계 용역 최종보고서 (고성만).

26.

고성군, (2008) 경상남도 고성군 통계연보 (2008-2009).

27.

통영시, (2008) 경상남도 통영시 통계연보 (2008-2009)

28.

해양수산부, (2005) 수산물 생산해역 안전평가 연구 보고서. pp. 3.

logo