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Abstract : Algorithms and software for predicting tandem mass spectra have been developed in recent years. In this work, we
explore how distinct in silico MS2 spectra are predicted for isomers, i.e. compounds having the same formula and similar molec-
ular structures, to differentiate between them. We used the CFM-ID 2.0/3.0 predictor with regard to (a) test compounds, whose
experimental mass spectra had been randomly sampled from the MassBank of North America (MoNA) collection, and to (b) the
most widespread isomers of test compounds searched in the PubChem database. In the first validation test, in silico mass spectra
constitute a reference library, and library searches are performed for test experimental spectra of “unknowns”. The searches led
to the true positive rate (TPR) of (46-48 ± 10)%. In the second test, in silico and experimental spectra were interchanged and this
resulted in a TPR of (58 ± 10)%. There were no significant differences between results obtained with different metrics of spectral
similarity and predictor versions. In a comparison of test compounds vs. their isomers, a statistically significant correlation
between mass spectral data and structural features was observed. The TPR values obtained should be regarded as reasonable
results for predicting tandem mass spectra of related chemical structures. 
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Introduction

Reference mass spectral libraries are essential data

resources in non-target chemical analysis.1-3 They have

been used in both classical electron ionization mass

spectrometry (MS) of volatile compounds and electrospray

ionization tandem mass spectrometry combined with

collisional activation (MS2) which is advantageous for

analysis of non-volatile compounds. However, MS2

libraries have limited application because they do not cover

many important compounds (e.g., metabolites and

pollutants). Until quite recently, the compound sets whose

MS2 spectra had been entered into the libraries were

measured in not more than the low tens of thousands.1,2,4

This is much less than the number of known chemical

compounds (tens of millions5,6) and most compounds are

non-volatile, as can be concluded from their molecular

masses (MM).

The generation of full MS2 libraries is certainly a time-

consuming and expensive enterprise. There is another way

to generate these libraries, which is based on the prediction

of the above spectra with the use of pertinent algorithms

and corresponding software. A similarity between in silico

mass spectra and experimental ones of the same

compounds can be considered as the rate of the prediction

performance. In the ideal but unlikely case, they are the

same spectra. 

Such computer predictors have been developed in recent

years; some of them were already used in building of MS2

libraries.2,4 Estimating the above-mentioned similarity

index/metric is involved in library searches resulting in the

best answers for experimental spectra of unknown

analytes. Thus, such searches demonstrate a mass spectrum

prediction performance, and they should be a part of

ongoing validation tests needed to estimate a progress level

of mass spectrum predictors and to explore the possibilities

of their wide use in MS2 analysis. 

In silico MS2 spectra can find another use, namely in the

case of the inability to record any experimental tandem

mass spectrum or one of good quality that is sufficient for

advanced searches in a reference MS2 library of an
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experimental origin. Here, it would be appropriate to

predict tandem spectra for some candidate compounds

derived from measuring exact ion masses and searching

chemical databases and subsequently to perform MS2

library searches with the in silico spectra as the features of

unknown analytes.7 This approach to identification also

requires its own validation.

In this work, we would like to further study mass

spectrum prediction performance by comparing in silico

and experimental MS2 spectra. It would be appropriate to

see how unique in silico MS2 spectra are generated for

compounds having similar molecular formulas and

structures. Among them, we focused on isomers, i.e.

compounds having the same formula. They represent the

most troubled sort of molecular similarity, which often

results in very similar mass spectra and therefore unreliable

differentiation of isomers.

To achieve the objective defined, pertinent collections of

predicted and experimental MS2 spectra should be formed.

Since in silico spectra contain exact mass peaks by the

nature of the prediction process, experimental spectra

should be properly acquired by high resolution mass

spectrometry (HRMS). We started by sampling a random

subset of high resolution MS2 spectra from the MassBank

of North America (MoNA) collection of experimental

spectra.8 In silico spectra were generated for every

compound whose spectra had been sampled (call them

“test compounds”) and for five of the most widespread

(abundant, cited) isomers found for every test compound in

the PubChem portal.5 Both experimental and predicted

spectra were entered into the special MS2 libraries. The

degree of similarity between in silico and experimental

spectra was estimated in two different groups of library

searches (Figure 1). First, the sample of experimental

spectra and corresponding in silico spectra were considered

as “unknown” and reference ones, respectively. This

validation test simulated an identification procedure based

on the use of a reference in silico mass spectral library. In

the second examination, the two MS2 subsets were

reversed: all in silico spectra were considered as

“unknown” data and all experimental ones of test

compounds (not just the sample) were the reference

spectra. The second test stimulated an identification option

conceivable for HRMS in the absence of any or high-

quality MS2 data.

As usual, the two outcomes of library searches were

eventually counted. The search and identification result

observed when “unknown” spectrum and the most similar

reference one (the 1st rank match) belonged to the same

compound was defined as true positive (TP). The best

match observed for different compounds implied a false

positive result (FP). The true positive rate (TPR,

Figure 1. The schematic for comparison of MS2 spectra. The CFM-ID 2.0 software was the starting predictor; the data for further

calculations using the version 3.0 are in parentheses. Various spectra of the same compounds were basically differed in collision energy.
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sensitivity) was calculated in both tests by taking into

account different spectral similarity indices (metrics). By

definition, TPR was the percent of TP among all the

searches. This quantity, TPR, was considered to be the

performance measure/rate of mass spectral prediction.

We used CFM-ID 2.0/3.0 software as the predictor.9-13

This is based on the probabilistic model (“Competitive

Fragmentation Modeling”) for MS2 fragmentations and

employs a machine learning approach for determining

model parameters (e.g., probabilities of transitions between

fragment ions from experimental mass spectra). There

were five reasons to prefer this predictor. This program (1)

predicts not only ion masses but also peak intensities, (2)

it was successfully used in interlaboratory comparisons in

the identification of low-molecular compounds,10 (3) it is

freely available online at the website,11,13 (4) it calculates

mass spectra rapidly. After all, (5) the problem of isomer

identification/differentiation by this software was indirectly

engaged in the work9 that provides some basis for

comparing the results that they achieved to our results. 

In addition to the main purpose of the study, which was

to determine a level of prediction trueness for mass spectra

of related compounds, there were several other goals of the

research. They were to find out the effects of various

metrics of spectral similarity on TPR and to correlate this

quantity to a general structural similarity of isomer

compounds corresponding to true and false results of

library searches. 

Methods

Samples of mass spectra and test compounds

The formation of the mass spectral subset sampled from

the MoNA collection was detailed in the article.14 Briefly,

the file of various 44157 MS2 spectra was imported from

MoNA8 and downloaded into the NIST MS Search 2.3

software.15 According to our estimation, the file contained

approximately 1.1×104 positive ion high-resolution tandem

mass spectra of a satisfactory quality. The “unknown”

spectra for the first test and reference spectra of the second

test were originated from that initial file. Two independent

raw subsets of 1% of initial spectra were randomly

sampled to form two selections of spectra of “unknown”

compounds. Both samples resulted in statistically

indistinguishable outcomes of library searches in the

previous research;14 here only one of them was used. The

sample was largely refined before the use. One/two-peak

spectra, very noisy ones, low-resolution and negative ion

data, unique spectra of any compound, and some other

items unacceptable for identification for a variety of

reasons were removed from the sample. The rest of the 109

items were used for the research.14 

From these 109 spectra, 100 of them were considered as

“unknown” spectra in the first test using the version 2.0.

The rest were MS2 spectra not recorded for [M+H]+

precursors (as demanded by the CFM-ID11 program) or

spectra belonging to compounds not found in PubChem.5

Those 100 spectra were originally acquired for 94 unique

compounds (test compounds, Table 1), with six of them

having two different spectra. For every from 94 items, five

of the most widespread/abundant isomers were found in

Pubchem. Optical and geometrical isomers of test

compounds known to result in the same or very similar

mass spectra were not taken into account. Isomers were

searched in PubChem by corresponding molecular

formulas. Compounds that were found were ranked by the

relevance feature and correlated with a data count (“the

degree of annotation”16). The last feature could reasonably

be expected to depend on a relative spread/abundance/

citation of chemical compounds.3 The top five isomers of

every test compound were eventually selected. The final

subset of test compounds and their isomers contained 558

Table 1. Test compounds and mass spectrometers used for

recording MS2 spectra.8

# Name Test 1* Test 2*

1
1-[4-(2-Chlorophenyl)piperazin-1-yl]

ethanone 
1 1

2 17α-Ethynylestradiol 1 1

3 1-Chlorobenzotriazole 2 1,2

4 1-Naphthonitrile 3 3

5 1-Octadecylamine 3 ** 3

6 2,4-Dimethylphenylformamid 2 1,2

7

2-Amino-3-[2,4-dichloro-6-hydroxy-3-[2-

[imidazole-1-carbonyl(propyl)amino] 

ethoxy]phenyl]sulfanylpropanoic acid

1 1

8 2-Bromoaniline 3 3

9 2-Phenylethylamine 3 3

10 2-Toluenesulfonamide 1 1

11 3,4-Methylenedioxy-N-methylamphetamine 1 1, 2

12
3-[(2-Chloro-1,3-thiazol-5-yl)methyl]-5-

methyl-1,3,5-oxadiazinan-4-imine 
1 ** 1

13 3-Bromo-N,N-dimethylaniline 3 3

14 3-Methylimidazo[4,5-f]quinolin-2-amine 3 3

15 4,5-Dichloro-2-n-octyl-3(2H)-isothiazolone 3 2,3

16 4,7-Phenanthroline 3 3

17
4-[Formyl-(6-methoxyquinolin-8-

yl)amino]pentanoic acid 
1 1

18 4-Aminoantipyrine 3 2,3

19 4-Amino-N,N-dimethylbenzenesulfonamide 3 1,3

20 4-Methoxycinnamic acid 1 1

21 5-Methoxyflavanone 2 2

22 Adenine 3 1,3

23 α-Codeimethine 2 2

24 Amidosulfuron 1 1
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unique compounds (there were some coincidences among

94 × 6 = 564 potentially different chemical species). Their

1674 MS2 spectra were calculated by CFM-ID 2.011 with

three different spectra for each compound predicted at

three collisional energies.

All the predictions were repeated employing the version

3.0, and three of them were failed. As a result, 97 in silico

spectra of test compounds and corresponding isomer mass

spectra (Figure 1) were taken into account. 

Library search

In the first test (Figure 1), each one from the “unknown”

spectra (100 or 97) was compared to the predicted ones by

Table 1. Contined.

# Name Test 1 *Test 2 *

22 Adenine 3 1,3

23 α-Codeimethine 2 2

24 Amidosulfuron 1 1

25 Amisulpride N-Oxide  1  1,2

26 Ampicillin 2 1

27 Apomorphine 2 3

28 Aspirin 1 1

29 Asulam 3 3

30 Atenolol 3 2,3

31 Atenolol-desisopropyl 1 1,2,3

32 Azobenzene 3 3

33 Benalaxyl 1 1,3

34 Benzidine 3 3

35 Bicalutamide 3 2,3

36 Caffeine 3 1,2,3

37 Carbamazepine-10,11-epoxide 3 2,3

38 Cetirizine N-Oxide 2 1,2

39 Chlorcyclizine 1 1

40 Chlorfenvinphos 3 1,3

41 Chromomycin A3 2 2

42 Cimetidine 1 1

43 Clopidogrel carboxylic acid 3 3

44 Dextromethorphan 3 2,3

45 Diatrizoate 3 3

46 Dihydroergotamine 2 2

47 Dioxoaminopyrine 3 3

48 Diphenyl phthalate 1 1

49 Doxylamine 1 1,2

50 Erythromycin 3 1,2,3

51 Estrone 3 1,3

52 Ethopabate 2 2

53 Ethoprop 1 1

54 Fenoterol 2 2

55 Fenthion 1 1,2

56 Fenthion-sulfoxide 1 1,2

57 Florfenicol 1 1

58 Forchlorfenuron 1 1

59 Gabapentin 2 2,3

60 Genistein 4 4

61 Ibuprofen 3 3

62 Iomeprol 3 3

63 Isoproturon 3 ** 2,3

64 Kresoxim-methyl acid 1 1

65 L-Arginine 1 1,3

Table 1. Contined.

# Name Test 1 *Test 2 *

66 Levamisole 3 2,3

67 L-Threonine 2 1

68 Mesotrione 3 2,3

69 Metamitron-desamino 2 ** 2,3

70 Metformin 3 1,2,3

71 Methsuximide 1 1

72 Methylprednisolone 3 2,3

73 Mirtazapine 1 1,2

74
N'-(2,4-Dimethylphenyl)-N-methylformami-

dine
3 2,3

75 N,N-Dimethyldecylamine N-Oxide 3 ** 3

76 N2-Isobutyryl-2'-deoxyguanosine 2 2

77 N4-Acetylsulfamethoxazole 3 2,3

78 N-Desmethylvenlafaxine 3 3

79 Noscapine 2 1,2,3

80 Penconazole 3 1,3

81 Perindopril 1 1,2

82 Phenazine 3 1,3

83 Phenylbutazone 1 1,2

84 Prednisolone 2 2,3

85 Pymetrozine 3 3

86 Rimsulfuron 3 3

87 Sulfadiazine 2 ** 2

88 Sulfadimethoxine 3 1,2,3

89 Tenoxicam 2 2

90 Terbinafine 1 1

91 Ticlopidine 1 1

92 trans-Zeatin 2 2,3

93 Tri(butoxyethyl) phosphate 1 1,3

94 Venlafaxine 2 1,2,3

* 1: Orbitrap (Q-FT), 2: Q-ToF, 3: Orbitrap (IT-FT), 4: different

instrument. 

** Two experimental spectra per a compound
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performing searches in the library of 1674 (1656) in silico

spectra. In the hit list of the library search, the formal 1st

rank of the reference spectrum of the same compound as

“unknown” meant the TP result of the search and,

consequently, conventional true identification. Following

all of the searches, TPR values were calculated. This rate

was considered not only as the performance of library

searches but also that of mass spectrum prediction. The

TPR quantity might depend on an index/metric of spectral

similarity. 

The second test was the reverse comparison where in

silico spectra were considered as ones of “unknown”

compounds (Figure 1). All experimental spectra of the test

compounds (> 2000 items initially contained in the MoNA

collection including the spectral sample) constituted the

reference library. The TPR calculation was more

complicated than for the first test. For every test compound

(under the research arrangement, six compounds were

taken into account twice, see above) and each one from its

five isomers, the spectrum was chosen from three in silico

ones which led to a maximum value of the similarity

metric/index with one or another reference spectrum of

corresponding test compound. The search result was TP

when the similarity metric was the highest for one or

another in silico spectrum of the test compound.

Conversely, the highest value of one or another isomer in

silico spectrum resulted in FP. Then, the TPR was

calculated for all 100 search groups and for every metric.

The second test was carried out for only the version 2.0

and two of four similarity metrics (see below). 

In library searches using the above-mentioned MS

Search program, we chose the relevant search option of

Identity, MS/MS. The previous14 m/z tolerance range of ±

0.01 Da was conventionally set for matching both

precursor and product ions. This range simulated the

search for HR mass spectra. The option of ignoring peaks

in the 1.6 Da range around precursor m/z was set to

exclude some false matches as was preliminarily proved.

All of the spectral similarity indices/metrics were

automatically calculated by the MS Search program. The

metrics were as follows: (a) the dot product of the

“unknown” and library spectrum (DotProd in the MS

Search 2.3 program), (b) the reverse dot product (Rev-Dot,

the close index which ignores non-matching peaks in the

unknown spectrum), (c) the modified dot product17

common for NIST MS Search software (denoted as Score),

and (d) the number of “unknown” spectrum peaks matched

to those in the reference spectrum (NumMP) within the

mass tolerance. The first three indices have a range from 0

to 999 with higher values indicating closer spectral

similarity. The NumMP metric is commonly a low number,

the average is six peaks. This might be expressed as the

percentage in relation to its maximum value (i.e., the

number of peaks in the “unknown” spectrum matched to

itself). In some cases, the same NumMP values were found

for reference spectra of several compounds. In this case,

matching metric values and corresponding candidates for

identification were conventionally ranked by the DotProd

index. 

The statistical errors18 of result rates (assuming that the

sample size of mass spectra under consideration, is much

smaller than the initial MoNA size) as well as the

significance of their differences19 were estimated at 95%

probability. For these rather small samples, the error level

was relatively high (up to 22% rel.). On the other hand,

with small samples, it was possible to manually review

many spectral matches that provided generally reliable

conclusions. 

Structural similarity 

The structural similarity was estimated by Tanimoto

indices which were calculated at the site.20 The Tanimoto

coefficient is defined as x/(x + y + z), which is the

proportion of the substructures shared among two chemical

compounds divided by their sum. The quantity x is the

number of subunits common in both compounds, while y

and z are the number of substructures that are unique in one

or the other compound, respectively. There are two

different sorts of substructures/subunits (structural

descriptors). They are (a) atom pairs (AP), defining the AP

Tanimoto index, and (b) the maximum common

substructures (MCS), providing the estimation of the MCS

Tanimoto index. Both Tanimoto indices have a range from

0 to 1 with lower values indicating lesser similarity than

higher ones. The statistical significance of the correlation

of structural similarity and spectral ones was estimated at

the site.21 

Results and Discussion

Rates of library searches

Results of library searches for different similarity metrics

(see above) are given in Table 2. Commenting on this

Table, the amazing thing that should be noted for Test 1 is

that all metrics resulted in the same or very similar TPR.

It is for this reason that we limited the estimates to only

two (common) similarity indices and the only predictor

version in Test 2. Here, more searches were performed and

no differences were also found between DotProd and

NumMP. Thus, choosing a certain metric and software

version was of no particular importance at this statistical

uncertainty level. Because the NumMP index counting

only ion masses provides similar search outcomes, correct

prediction of mass predominates over that of peak

intensity. For the same compound, different metrics take

into account the same mass values or many of them (Rev-

Dot) and thus resulted in similar (a) orders of metric values

of isomers and (b) eventual TPRs. Another conclusion is

that the later CFM-ID version 3.0 does not ensure

significant progress in mass spectra prediction of
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compounds under the study. Such prediction improvement

was manifested mainly for lipids12 that were not available

in the random compound sample (see above). It should be

additionally noted that there were no substantial

differences in TPRs obtained for different tandem

instruments (Table 1). 

With this error level, differences between both tests were

insignificant. Taking into account that approximately one

in two in silico mass spectra of test compound were

predicted better than corresponding isomer spectra, the

TPR values obtained, 46-48% and 58%, should be

regarded as the satisfactory level of predicting tandem

mass spectra of similar chemical structures. 

With regard to isomer differentiation, our results should

be matched to previous ones achieved in the work of the

authors of this predictor.9 There were comparisons of

predicted MS2 spectra of approximately 1000 metabolites

to experimental spectra of these metabolites and

compounds similar to them in MM. In that research, the

TPR was only 10-12% with 88-90% of the candidate

compounds belonging to different groups of isomers. Thus,

it was also essentially a test for differentiation of isomers

with the same predictor software and worse outcomes (10-

12% vs. 46-48% or 58%). There may be several reasons to

explain this difference. Possibly, the discrepancy between

two results is because an earlier PubChem release was used

in the work9 as the source of structures. Furthermore,

different metrics of spectral similarity were exploited in our

research and in works.9,12 Another possible reason was that

optical and geometrical isomers having very similar mass

spectra were not excluded from the list of candidate

compounds as opposed to our research (see above). It also

can be concluded that in our case only the most widespread

candidate compounds were taken into account. Their

structures (and consequently mass spectra, see below) might

be more dissimilar and discriminated with the higher rate.

Mass spectral vs. structural similarity

It is reasonable to suppose that the greater the structural

difference of a test compound and its isomer, the better the

chance that the in silico mass spectrum of the first

compound rather than that of the isomer will be more

similar to the test experimental spectrum. In our data, a

close similarity between experimental and in silico spectra

of the same compounds, if achieved, is commonly semi-

quantitative. That is, m/z values of principal ion fragments,

but not necessarily the order of relative intensities of

corresponding peaks, are the same (Figure 2, a, b). The

similarity between the in silico spectra of candidate isomer

compounds and the corresponding experimental spectra of

the test compound is often much smaller (Figure 2, c, d).

In this context, some principle of minimalism should be

advanced in solving identification problems of several

isomers. This is that not very close similarity of in silico

and experimental mass spectra of the compound under

identification is of the first value, a minor resemblance of

in silico mass spectra of other candidate compounds in

relation to the compound to be identified may be of

increasing importance.

The relationship between the similarity of the mass

spectra and that of structures was explored in detail by

estimating the correlation between the DotProd metric

derived from Test 2 and the corresponding Tanimoto

indices of structural similarity.20 The difference between

two DotProd values obtained in the library searches was

calculated for every test compound. The first one was the

best (i.e., the maximum value from three ones) similarity

index between in silico and reference/experimental mass

spectra of the test compound. This quantity can be denoted

as DotProd(test) (e.g., 774, Figure 2 for spectra a and c).

The second index was the maximum value from many tens

of pair comparisons between all in silico spectra of isomers

of that test compound and all its experimental spectra. This

is the DotProd(candidate) value (e.g., 273 in Figure 2, b,

d). The difference of DotProd(test_candidate) =

(DotProd(test) - (DotProd(candidate)) is positive (501,

Figure 2) when the mass spectra of test compounds are

predicted better than their isomers and negative if isomer

candidates provide the better/false prediction and

correspondingly higher DotProd values. The

DotProd(test_candidate) difference as the prediction

performance was further correlated with the structural

similarity of corresponding pairs of test compounds and

their “the best” isomers (Figure 3). 

Figure 3 demonstrates that the DotProd(test_candidate)

variable decreases with both coefficient of structural

Table 2. True positive rates.

 Metric
TPR (%)

 Test 1, 2.0  Test 1, 3.0  Test 2, 2.0

Dot product (DotProd) 46 ± 10 48 ± 10 58 ± 10

Reverse dot product (Rev-Dot) 46 ± 10 47 ± 10 not estimated

NIST-modified dot product (Score) 46 ± 10 46 ± 10 not estimated

Number of matching peaks (NumMP) * 46 ± 10 48 ± 10 58 ± 10

* The conditional estimate (see above) taking into account that the metric value might be the same for the spectra of several compounds
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Figure 2. Test 2, in silico mass spectra of isoproturon (a) and its isomer (“the best” one), oxotremorine (c), and reference experimental

spectra of isoproturon (b and d, respectively) most similar to these in silico spectra by DotProd indices. The last are 774 and 273,

respectively, which are the maximum values for this test compound and all of its isomers. The pair structural similarity (the common

substructure is in the centre; AP Tanimoto: 0.0194, MCS Tanimoto: 0.2000) is one of the lowest among our data; the DotProd difference

(501) is one of the highest values. 

Figure 3. Test 2, the dependences of the DotProd(test_candidate) quantity as the relative prediction performance of tandem mass spectra

on corresponding Tanimoto coefficients as the pair similarity of structures of test compounds and their “the best” isomers. Dependences

a and c include all of the data, b and d exclude points with strong structural similarity (Tanimoto values > 0.5). All of the R reverse

correlation coefficients are significant for the probability 95%. 
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similarity of corresponding pairs of test compounds and

“the best” isomers. The R correlation coefficient (reverse

correlation) is not strong but statistically significant. It is

remarkable that the exclusion of data for relatively strong

structural similarity (Figure 3, b, d) improves the

correlation. Clearly, this is the expected result because

many FPs are hardly avoidable when mass spectra for

structurally very similar compounds are predicted. With

АР Tanimoto and MCS Tanimoto being > 0.5, (i.e., in the

case of more similar structures) TPR was only 43% and

39%, respectively. If more dissimilar structures are

compared (АР Tanimoto and MCS Tanimoto are ≤ 0.5),

65% and 70% of true identifications were recorded. It

should be noted that a stronger correlation of similarity

indices of spectra and structures is hardly expected. The

reason is that the difference in mass spectra (i.e., the

dissimilarity in parent ion fragmentation) depends not only

on the general structural difference but also on special

fragmentation features determined by particular functional

groups on their protonation. A noteworthy detail is that we

did not find any single substructure ensuring that many

mass spectra of test compounds are predicted worse than

their isomers.

Conclusion

We advanced validation tests for the prediction process

of tandem mass spectra. In these, the prediction results

were compared with compounds of the same molecular

formula and a relatively similar structure which eventually

were chosen by the feature of relatively high occurrence/

abundance in the literature or internet databases. 

Two kinds of non-target mass spectrometry analysis

were stimulated in the tests. (1) The reference mass

spectral library consists of in silico mass spectra. Library

searches are performed for experimental spectra of

unknown compounds. (2) With a given molecular formula

as a reliable result from the use of HRMS, a search in

chemical databases lead to several candidate molecules of

isomers which could be further ranked by their abundance.

Mass spectra of highly ranked candidates can be predicted

and compared to the reference library of mass spectra of

experimental origin. The top position (1st rank) of reference

mass spectra in the hit list provisionally determines a true

positive result. 

We used the CFM-ID 2.0/3.0 predictor with regard to (a)

test compounds whose experimental mass spectra had been

randomly sampled from the MoNA collection, and to (b)

the most widespread isomers of test compounds searched

in the PubChem database. Our comparisons led to TPR of

(46-48 ± 10) % and (58 ± 10) % in those tests, respectively.

With the uncertainty ranges, these quantitates were

independent of the kind of spectral similarity indices/

metrics and the predictor version. Taking into account that

approximately a half of actual candidates for identification

were correctly predicted, the TPR values obtained should

be regarded as reasonable results for predicting tandem

mass spectra of isomeric chemical structures. Further

development of approaches to efficient mass spectrum

prediction is much required. Now, the predictor under

study and some other computer programs2,22,23 can be used

for forming lists of candidate molecules (identification

hypotheses3) in non-target analyses. With increasing

dissimilarity of related structures, the probability of

erroneous prediction of foreign molecules will be reduced. 
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