- P-ISSN 2233-4203
- E-ISSN 2093-8950
In recent years, matrix-free laser desorption ionization (LDI) for mass spectrometry of thermally labile molecules has been an important research subject in the pursuit of new ionization methods to serve as alternatives to the conventional matrixassisted laser desorption ionization (MALDI) method. While many recent studies have reported successful LDI of thermally labile molecules from various surfaces, mostly from surfaces with nanostructures, understanding of what drives the LDI process still requires further study. This article briefly reviews the thermal aspects involved in the LDI mechanism, which can be characterized as rapid surface heating. The thermal mechanism was supported by observed LDI and postsource decay (PSD) of peptide ions produced from flat surfaces with special thermal properties including amorphous Si (a-Si) and tungsten silicide (WSix). In addition, the concept of rapid surface heating further suggests a practical strategy for the preparation of LDI sample plates, which allows us to choose various surface materials including crystalline Si (c-Si) and Au tailorable to specific applications.
Fenn J. B.. (1989). . Science, 246, 64-.
Tanaka, K.. (1988). . Rapid Commun. Mass Spectrom, 2, 151-.
Karas, M.. (2003). . Chem. Rev, 103, 427-.
김정권. (2015). Sample Preparation for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Mass Spectrometry Letters, 6(2), 27-30. http://dx.doi.org/10.5478/MSL.2015.6.2.27.
Robb, D. B.. (2000). . Anal. Chem, 72, 3653-.
Bruins, A. P.. (1991). . Mass Spectrom. Rev, 10, 53-.
Cody, R. B.. (2005). . Anal. Chem, 77, 2297-.
Takáts, Z.. (2004). . Science, 306, 471-.
McDonnell L. A.. (2007). . Mass Spectrom. Rev, 26, 606-.
Buriak, J. M.. (1999). . Nature, 399, 243-.
Alimpiev, S.. (2008). . J. Chem. Phy, 128, 014711-.
Northen, T. R.. (2007). . Nature, 449, 1033-.
Go, E. P.. (2005). . Anal. Chem, 77, 1641-.
Piret, G.. (2010). . Langmuir, 26, 1354-.
Walker, B. N.. (2009). . Angew. Chem. Int. Edit, 48, 1669-.
Walker, B. N.. (2010). . J. Phys. Chem. C, 114, 4835-.
Peterson, D. S.. (2007). . Mass Spectrom. Rev, 26, 19-.
Shin, W. J.. (2010). . J. Am. Soc. Mass Spectrom, 21, 989-.
Alimpiev, S.. (2001). . J. Chem. Phys, 115, 1891-.
Luo, G.. (2005). . J. Phys. Chem. B, 109, 24450-.
Tanaka, K.. (2003). . Angew. Chem. Int. Edit, 42, 3860-.
Daves Jr., G. D.. (1979). . Accounts Chem. Res, 12, 359-.
Beuhler, R. J.. (1974). . J. Am. Chem. Soc, 96, 3990-.
한상윤. (2015). Observation of Intact Desorption Ionization of Peptide Molecules from Arrays of Tungsten Oxide Nanowires by Laser Irradiation. Bulletin of the Korean Chemical Society, 36(8), 1951-1952. http://dx.doi.org/10.1002/bkcs.10396.
Kim, S. H.. (2012). . J. Am. Soc. Mass Spectrom, 23, 935-.
Burgess Jr., D.. (1986). . J. Vac. Sci. Technol. A, 4, 1362-.
Collette, C.. (1998). . Rapid Commun. Mass Spectrom, 12, 1673-.
Luo, G.. (2002). . Anal. Chem, 74, 6185-.
Stolee, J. A.. (2010). . J. Phys. Chem. C, 114, 5574-.
Chen, Y.. (2006). . Anal. Chem, 78, 5835-.
Shin Hye Kim. (2012). Observation of Peptide-Ion Generation by Laser-Induced Surface Heating from Tungsten Silicide Surfaces. Mass Spectrometry Letters, 3(1), 18-20. http://dx.doi.org/10.5478/MSL.2012.3.1.018.
Kim, S. H.. (2013). . J. Am. Soc. Mass Spectrom, 24, 167-.
Kim, S. H.. (2014). . Surf. Interface. Anal, 46, 35-.