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DERIVATIONS WITH NILPOTENT VALUES ON Γ-RINGS

Kalyan Kumar Dey a, ∗, Akhil Chandra Paul b and Bijan Davvaz c

Abstract. Let M be a prime Γ-ring and let d be a derivation of M . If there exists
a fixed integer n such that (d(x)α)nd(x) = 0 for all x ∈ M and α ∈ Γ, then we prove
that d(x) = 0 for all x ∈ M . This result can be extended to semiprime Γ-rings.

1. Introduction

The notion of a Γ-ring was first introduced by Nobusuwa [10] as a generalization
of a classical rings and then Barnes [2] generalized the same concepts in a broad
sense. The concept of a derivation and a Jordan derivation of Γ-rings have been
first introduced by Sapanci and Nakajima [13] and they proved that every Jordan
derivation in a certain prime Γ-ring is a derivation. Afterwards many Mathemati-
cians worked on derivations of Γ-rings and developed some fruitful results. Paul
and Uddin [11, 12] studied on Jordan and Lie structures in Γ-rings and they proved
the Levitzki’s Theorem in Γ-rings. In [5], Halder and Paul proved that if d is a left
derivation of a 2-torsion free semiprime Γ-ring such that (d(x)α)nd(x) = 0 for all
x ∈ M and α ∈ Γ, then d = 0, where n is a fixed integer. Giambruno and Herstien
[4] proved a classical result in rings which is stated as follows: If d is a derivation of
a prime ring R, such that d(x)n = 0 for all x ∈ R, then d(x) = 0, where n is a fixed
integer. He also extended this result to semiprime rings. Feng Wei [15] proved it in
generalized derivations of semiprime rings. Then, Ali, Ali and Fillips [1] worked on a
nilpotent and invertible values on semiprime rings with generalized derivations and
they developed some remarkable results. By the same motivations as in Giambruno
and Herstein [4], we develop the following result in this paper. If d is a derivation
of a prime Γ-ring such that (d(x)α)nd(x) = 0 for all x ∈ M and α ∈ Γ, then d = 0,
where n is a fixed integer. We also extend this result in semiprime Γ-rings.
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2. Γ-rings and Derivations

Let M and Γ be additive abelian groups. If there exists a mapping (x, α, y) → xαy

of M × Γ×M → M which satisfies the conditions:

(1) (x + y)αz = xαz + yαz, x(α + β)y = xαy + xβy, xα(y + z) = xαy + xαz,
(2) (xαy)βz = xα(yβz),

for all x, y, z ∈ M and α, β ∈ Γ, then M is called a Γ-ring in the sense of Barnes [2].
A Γ-ring M is prime if xΓMΓy = 0 implies that x = 0 or y = 0, and is semiprime if
xΓMΓx = 0 implies x = 0. A subring A of a Γ-ring M is said to be an ideal of M

if AΓM ⊆ A and MΓA ⊆ A. Let M be a Γ-ring. An additive mapping d : M → M

is called a derivation if d(xαy) = d(x)αy + xαd(y) holds for all x, y ∈ M and α ∈ Γ,
and d is called a Jordan derivation if d(xαx) = d(x)αx+xαd(x) holds for all x ∈ M

and α ∈ Γ. An ideal P of a Γ-ring M is said to be prime if for any ideals A and B

of M , AΓB ⊆ P implies A ⊆ P or B ⊆ P . A Γ-ring M is said to be prime if the
zero ideal is prime.

Theorem 2.1 ([10]). If M is a Γ-ring, the following conditions are equivalent:

(1) M is a prime Γ-ring.
(2) If a, b ∈ M and aΓMΓb = 〈0〉, then a = 0 or b = 0.
(3) If 〈a〉 and 〈b〉 are principal ideals of M such that 〈a〉Γ〈b〉 = 〈0〉, then a = 0

or b = 0.
(4) If A and B are right ideals of M such that AΓB = 〈0〉, then A = 〈0〉 or

B = 〈0〉.
(5) If A and B are left ideals of M such that AΓB = 〈0〉, then A = 〈0〉 or

B = 〈0〉.

3. Derivations with Nilpotent Values on Γ-rings

We begin with the following lemmas which are essential for proving our main
results.

Lemma 3.1 ([14, Lemma 3]). If d 6= 0 is a derivation of M , then d does not vanish
on a non-zero one-sided ideal of M .

Proof. Let L 6= 0 be the left ideal of M . Suppose that d(L) = 0. For all x ∈ L,
m ∈ M and α ∈ Γ, we have mαx ∈ L. Therefore, 0 = d(mαx) = d(m)αx +
mαd(x) = d(m)αx. Since d 6= 0, we have x = 0, a contradiction to the fact that
L 6= 0. ¤
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Lemma 3.2. If L 6= 0 is a left ideal of M and T = {x ∈ L | LΓx = xΓL = 0}.
Then, L/T is a prime Γ-ring.

Proof. It is sufficient to prove that T is a prime ideal of L. Let U and V be ideals
of L such that UΓV ⊆ T . Then, LΓUΓV ΓL ⊆ LΓTΓL = 0. But LΓU and V ΓL

are ideals of M . Since M is prime, either LΓU = 0 or V ΓL = 0. If LΓU = 0, then
U ⊆ T . If V ΓL = 0, then V ⊆ T . Therefore, we have either U ⊆ T and V ⊆ T . ¤

In [11, Theorem 3.1], Paul and Uddin proved the Levitzki Theorem in Γ-rings.
In this paper we will frequent used of its special case.

Lemma 3.3 ([11, Theorem 3.1]). If L is a left ideal of M and (xα)nx = 0 for all
x ∈ L and α ∈ Γ, where n is a fixed integer, then L = 0.

We shall also use an easy variant of Lemma 3.3.

Lemma 3.4. If x, y ∈ M and ((xαmβy))n(xαmβy) = 0 for all m ∈ M and α, β ∈ Γ,
where n is a fixed integer, then yαx = 0 for all α ∈ Γ.

Definition 3.5. Let M be a Γ-ring and let R be a subset of M . Define L(R) = {x ∈
M | xαr = 0, for all r ∈ R and α ∈ Γ}, and T (R) = {x ∈ M | rαx = 0, for all r ∈
R and α ∈ Γ}.

It is clear that L(R) is a left ideal and T (R) is a right ideal of M .
Let M be a prime Γ-ring and d be a derivation of M such that (d(x)α)nd(x) = 0

for all x ∈ M and α ∈ Γ. We have to show that d = 0.
We begin with assuming that d = 0. Our first result is:

Lemma 3.6. For x ∈ M , d(L(x)) ⊆ L(x) and d(T (x)) ⊆ T (x).

Proof. If y ∈ L(x), then yαx = 0 for all α ∈ Γ. Therefore,

0 = yαd(xαy)αd(xαy)
= yα(d(x)αy + xαd(y)αd(xαy)
= yαd(x)αyαd(xαy) + yαxαd(y))αd(xαy)
= yαd(x)αyα(d(x)αy + xαd(y))
= yαd(x)αyαd(x)αy.

Now, we have
0 = yα(d(xαy)α)2d(xαy)

= yαd(xαy)αd(xαy)αd(xαy)
= yαd(x)αyαd(x)αyα(d(x)αy + xαd(y))
= yα((d(x)αyα)2d(x)αy

Therefore, we have
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0 = yα(d(xαy)α)nd(xαy) = yα((d(x)αy)α)nd(x)αy.

Thus, d(x)αyα(d(xαy)α)nd(x)αy = 0. This implies that ((d(x)αy)α)n+1d(x)αy = 0
for all y ∈ L(x) and α ∈ Γ. But then L(x)Γd(x) is a left ideal of M in which every
element is nilpotent. Therefore, by Lemma 3.3, L(x)Γd(x) = 0.

For y ∈ L(x), we have 0 = d(yαx) = d(y)αx + yαd(x) = d(y)αx. Now, we
have d(L(x)) ⊆ L(x). On the other hand, the analogous argument yields d(T (x)) ⊆
T (x). ¤

Lemma 3.7. If x ∈ M , then either d(xΓM)Γx = 0 or L(x)Γd(L(x)). Similarly,
either xΓd(MΓx) = 0 or d(T (x))ΓT (x) = 0.

Proof. Let a, b ∈ L(x). Then, aαx = 0 and bαx = 0 for all α ∈ Γ. Now, we
obtain that d(b)αxαa = 0, and so, d(b)αd(xαa) = 0. Since xαa ∈ L(x), we have
d(xαa)αd(xαa) = 0. Now, we have

0 = d(xαa + b)αd(xαa + b)
= (d(xαa) + d(b))α(d(xαa) + d(b))
= d(xαa)αd(xαa) + d(b)α)d(xαa) + d(xαa)αd(b) + d(b)αd(b)
= d(xαa)αd(b).

Hence,
0 = d(xαa + b)αd(xαa + b)αd(xαa + b)

= (d(xαa)αd(b))α(d(xαa) + d(b))
= d(xαa)αd(b)αd(xαa) + d(xαa)αd(b)αd(b)
= d(xαa)αd(b)αd(b).

Using the same argument, we obtain,

(1) 0 = (d(xαa + b)α)nd(xαa + b) = d(xαa)α(d(b)α)n−1d(b).

Let m ∈ M , a, b ∈ L(x), aαx = 0 and bαx = 0 for all α ∈ Γ. Therefore, aαxαmαa =
bαxαmαa = 0. Hence, the result of (2) gives us

0 = d(aαmαxαa)α(d(b)α)n−1d(b)
= (d(aαm)α(xαa) + aαmαd(xαa)αd(b)α)n−1d(b)
= d(aαm)α(xαa)αd(b)α)n−1d(b) + aαmαd(xαa)α(d(b)α)n−1d(b)
= d(aαm)α(xαa)αd(b)α)n−1d(b), using (2).

In other words, we write the above relation as d(aαm)αxαL(x)αd(b)α)n−1d(b) = 0
for all m ∈ M , b ∈ L(x) and α ∈ Γ. If L(x)αd(b)α)n−1d(b) 6= 0, then by the
primeness of M , we obtain d(aαm)αx = 0 for all m ∈ M and α ∈ Γ. Hence, we
have d(aΓM)Γx = 0. On the other hand, suppose that L(x)α(d(b)α)n−1d(b) = 0
for all b ∈ L(x) and α ∈ Γ. Since d(L(x)) ⊆ L(x) and d(T ) ⊆ T where T = {c ∈
L(x) | L(x)αc = 0}, d induces a derivation which we write as d on B = L(x)/T .
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By Lemma 3.2, B is a prime Γ-ring. The fact that L(x)α(d(b)α)n−1d(b) = 0 for all
b ∈ L(x) translates into (d(c)α)n−1d(c) = 0 for all c ∈ B. Thus, d(c) = 0 for all
c ∈ B (by induction). This yields us that d(L(x)) ⊆ T and so L(x)αd(L(x)) = 0 for
all α ∈ Γ. The same argument yields the right-handed version of what we have just
proved. Thus, the proof is completed. ¤

Lemma 3.6 gives us two sets of elements which have rather particular properties,
and which yield the following definition:

We set A = {x ∈ M | xΓd(MΓx) = 0} and B = {x ∈ M | d(xΓM)Γx = 0}.
These two subsets A and B play a key role in which what is to follow. Their basic
algebraic characterizations are expressed in the following.

Lemma 3.8. A is a non-zero left ideal of M , B is a nonzero right ideal of M and
AΓB = 0. Furthermore, d(A) ⊆ A, d(B) ⊆ B and AΓd(A) = d(B)ΓB = 0.

Proof. The stated properties of A and B are the same, so we have to show that
A 6= 0 is a left ideal of M , d(A) ⊆ A and d(A)ΓA = 0. If x, y ∈ M are such that
(x)Γd(L(x)) = 0 and L(y)Γd(L(y)) = 0. Then, we shall prove that L(x)Γd(L(y)) =
0. In order to see this, let a, b ∈ L(x) and t, z ∈ L(y). By our assumption on L(x)
and L(y), we obtain d(aαb) = d(a)αb and d(tαz) = d(t)αz. Therefore,

0 = bα(d(aαb + tαz)α)2nd(aαb + tαz)
= bα((d(a)αb + d(t)αz)α)2n(d(a)αb + d(t)αz)
= bαd(t)αzα((d(a)αb + d(t)αz)α)2n−1(d(a)αb + d(t)αz)
. . .
= (bα((d(t)αzαd(a)αb)α)nd(t)αzαd(a)αb.

Therefore, (bα(d(t)αzα((d(a)α)n+1bαd(t)αzαd(a) = 0 for all a, b ∈ L(x), t, z ∈ L(y)
and α ∈ Γ. Making several uses of Lemma 3.3, we obtain from the above relation
that L(x)αd(L(y))αL(y)αd(L(x)) = 0 for all α ∈ Γ. Since M is prime, we have
L(x)αd(L(y)) = 0 or L(y)αd(L(x)) = 0 for all α ∈ Γ. Suppose that L(y)αd(L(x)) =
0 for all α ∈ Γ. Then, for all b ∈ L(y), z, t ∈ L(x). Since L(x)αd(L(x)) = 0,
0 = zαd(bαt) = zα(d(b)αt + bαd(t)) = zαd(b)αt and bαd(t) ∈ L(y)αd(L(x)) = 0.
Thus, zαd(b)αL(x) = 0 and so zαd(b) = 0. This says that L(x)αd(L(y)) = 0.
Thus, our assertion has been verified. We shall now show that A 6= 0. Suppose
that A = 0. By Lemma 3.6, we get that L(x)αd(L(x)) = 0 for all x ∈ M . Take
y ∈ M such that L(y) 6= 0. By Lemma 3.1, d(L(y)) 6= 0. Since (d(x)α)nd(x) = 0
for all x ∈ M , α ∈ Γ, d(x) ∈ L(d(x)α)n−1d(x), hence d(x)αd(L(y)) = 0. Since
d(L(y)) 6= 0, d(x) = 0 which is a contradiction to the fact that d 6= 0. Thus, indeed,
A 6= 0.



242 Kalyan Kumar Dey, Akhil Chandra Paul & Bijan Davvaz

Our next goal is to show that A is a left ideal of M . From the definition of
A = {x ∈ M | xΓd(MΓx) = 0}. It is clear that x ∈ A, t ∈ M , α ∈ Γ forces tαx ∈ A.
So, all we need to show that if x, y ∈ A, then x + y ∈ A. If a, b, z, t ∈ M , then
d(aαxαbαx) = d(aαx)αbαx + aαxαd(bαx) = d(aαx)αbαx, since x ∈ A. Similarly,
d(zαyαtαy) = d(zαy)αbαy. Now, we have

0 = ((d(aαx)αbαx + zαyαtαy)α)2n(d(aαxαbαx + zαyαtαy)αd(aαx)αbαx
= ((d(aαx)αbαx + d(zαy)αtαy)α)2n(d(aαx)αbαx + d(zαy)αtαy)αd(aαx)αbαx
= d(aαx)αbαxα((d(zαy)αbαyαd(aαx)µ)n(d(zαy)αtαyαd(aαx))αbαx.

Since aαxαd(bαx). Thus, we get that

((d(aαx)αbαxαd(zαy)αtαy)α)n+1(d(aαx)αbαxαd(zαy)αtαy = 0,

for all a, b, z, t ∈ M and α ∈ Γ. In view of Lemma 3.3, we obtain that xαd(zαy) = 0
for all x, y, z ∈ M and α ∈ Γ. This yields that xαd(mαy) = 0 or yαd(mαx) = 0 for
all m ∈ M and α ∈ Γ. If xαd(mαy) = 0, then since xαd(mαx) = 0, we have

0 = xαd(mαyαmαx)
= xαd(mαy)αmαx + xαmαyαd(mαx)
= xαmαyαd(mαx)

and so yαd(mαx) = 0 by the primeness of M . Thus, we obtain that

(x + y)αd(mαx + d(mαy)) = xαd(mαx)

= xαd(mαx + yαd(mαx) + yαd(mαy) = 0,

this implies that x + y ∈ A. Therefore, so far, we have seen that A 6= 0 is a left
ideal of M . Of course, we also now have by the same argument that B 6= 0 is a
right ideal of M . In view of the definition of A and Lemma 3.5, twice yields that
d(A) ⊆ A. Now, we want to prove that AΓd(A) = 0. Let x, y ∈ A. We have seen
that yαd(mαx) = 0, hence yαd(mαxαy) = 0. This gives that 0 = yαd(mαx)αy +
yαmαxαd(y) = yαMαxαd(y). The primeness of M gives that xαd(y) = 0 and so,
AΓd(A) = 0. Similarly, we can prove that d(B)ΓB = 0. Now, we also have to show
that AΓB = 0. Let x ∈ A, y ∈ B, z ∈ M and α ∈ Γ,

0 = (d(xαzαx + y)α)2n(d(xαzαx + y)
= (d(xαzαx) + d(y))α)2n(d(xαzαx) + d(y))
= ((d(x)αzαx + xαd(zαx) + d(y))α)2n(d(x)αzαx + xαd(zαx) + d(y))
= ((d(x)αzαx + d(y))α)2n(d(x)αzαx + d(y)), since xαd(zαx) = 0.

Therefore,

((d(x)αzαx + d(y))α)2n(d(x)αzαx + d(y)) = 0.
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This gives that

0 = (d(x)αzαx + xαd(zαx) + d(y))2n(d(x)αzαx + xαd(zαx) + d(y))

and since d(y)αd(y) = 0 and xαd(x) = 0. We obtain (d(x)αzαx+d(y))2n(d(x)αzαx+
d(y)) = 0. Therefore, (d(x)αzαx + d(y))2n(d(x)αzαx + d(y)) = 0. By Lemma
3.4, we obtain that xαd(y)αd(x) = 0 for all x ∈ A, y ∈ B and α ∈ Γ. So,
d(xαy)αd(x) = d(x)αyαd(x) + xαd(x)αd(x) = d(x)αyαd(x). But,

0 = (d(xαy)α)nd(xαy)αd(x)
= (d(xαy)α)n(d(x)αy + xαd(y))αd(x)
= (d(xαy)α)nd(x)αyαd(x)
. . .
= (d(x)αy)α)n+1d(x).

Therefore, ((d(x)αyα)n+1d(x)αy = 0. This shows that d(x)αy is a nilpotent ele-
ment of a nil right ideal d(A)ΓB of bounded index of nilpotent n + 1. By Lemma
3.3, d(x)αy = 0. This gives that d(A)ΓB = 0 since A is a left ideal of M,
0 = d(MΓA)ΓB = d(M)ΓAΓB + MΓd(A)ΓB = d(M)ΓAΓd(B). We conclude
that AΓB = 0. ¤

Lemma 3.9. If x ∈ M and xαx = 0 for all α ∈ Γ, then x ∈ A ∪B.

Proof. Suppose that x 6∈ B, by Lemma 3.6, L(x)Γd(L(x)) = 0. Since xαx = 0,
x ∈ L(x) and MΓd(L(x)) ⊆ MΓL(x) ⊆ L(x). Now, we have d(MΓx) ⊆ d(L(x)).
Therefore, xΓd(MΓx) ⊆ L(x)Γd(L(x)) = 0. Hence, xΓd(MΓx) = 0 and by the
definition of A, we obtain x ∈ A. ¤

Now, we are in a position to prove our main result.

Theorem 3.10. If M is a prime Γ-ring and d : M → M a derivation such that
(d(x)α)nd(x) = 0 for all x ∈ M and α ∈ Γ, where n ≥ 1 is a fixed integer, then
d = 0.

Proof. Let C = A ∪ B ⊇ BΓA 6= 0, where A 6= 0 and B 6= 0 are respectively,
left and right ideals of the prime Γ-ring M . Let p ∈ C, since d(x) is nilpotent,
we have 0 = pαd(x)αp = pαd(x)αd(x)αp. Because pαp ∈ CΓC ⊆ AΓB = 0, we
get that (pαd(x) − d(x)αp)α(pαd(x) − d(x)αp) = 0. But then, by Lemma 3.8,
pαd(x) − d(x)αp ∈ A ∪ B for all x ∈ M . Suppose that pαd(x) − d(x)αp ∈ A, say,
since p ∈ C ⊆ A, d(x)αp ∈ A. Hence, pαd(x) ∈ A. If pαd(x)−d(x)αp ∈ B, then the
similar argument end up with d(x)αp ∈ B, since pαd(x) ∈ B. So, for every x ∈ M ,
either pαd(x) ∈ A or d(x)αp ∈ B. This implies that pΓd(M) ⊆ A or d(M)Γp ⊆ B.
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If pΓd(M) ⊆ A, then since pΓC ⊆ B, pΓd(M) ⊆ B, hence pΓd(M) ⊆ C. Similarly,
if d(M)Γp ⊆ B, then we get d(M)Γp ⊆ C. So, for every p ∈ C, pΓd(M) ⊆ C or
d(M)Γp ⊆ C. This implies that CΓd(M) ⊆ C or d(M)ΓC ⊆ C. Suppose that
CΓd(M) ⊆ C. Hence, CΓd(M)Γd(A) ⊆ CΓd(A) ⊆ AΓd(A) = 0. Now, BΓA ⊆ C,
thus BΓA ⊆ d(M)Γd(A) ⊆ CΓd(M)Γd(A) = 0. Since B is a right ideal of M and
B 6= 0, the primeness of M forces that AΓd(M)Γd(A) = 0.

Consider the left ideal AΓd(M) of M . Let t =
∑

aiαid(mi), ai ∈ A, αi ∈ Γ,
mi ∈ M , be any element of AΓd(M). Thus, if v =

∑
aiαimi, then

d(v) =
∑

d(ai)αimi +
∑

aiαid(mi) = t + w,

where w =
∑

d(ai)αimi. Furthermore,

tΓw =
∑

aiαid(mi)Γd(ai)αimi ∈ AΓd(M)Γd(A)ΓM = 0,

so tΓw = 0. Now, we have

0 = (d(v)α)nd(v) = ((t + w)α)n(t + w)

= (tα)nt + (wα)nw + (wα)n−1wαt + . . . + wα(tα)n−1t,

since tαw = 0 for every α ∈ Γ. Therefore, 0 = tα(tα)nt + (wα)nw + . . . +
wα(tα)n−1t) = (tα)n+1t. In other words, every element in AΓd(M) is nilpotent
of degree at most n + 1. Therefore, by Lemma 3.3, AΓd(M) = 0. Since A 6= 0,
we have d(M) = 0. Similarly, if d(M)ΓC ⊆ C, then we have d(M)ΓB = 0. Since
B 6= 0, d(M) = 0. This proves the theorem. ¤

Now we prove the more general result.

Theorem 3.11. Let I 6= 0 be an ideal of a prime Γ-ring M and d be a derivation
of M . If (d(x)α)nd(x) = 0 for all x ∈ I, where n ≥ 1 is a fixed integer, then d = 0.

Proof. If d(I) ⊆ I, the result is obvious. But even if d(I) 6⊆ I, our proof is easily
adjusted to prove the result. ¤

Theorem 3.11 can be extended to semiprime Γ-rings which is given in the following
theorem.

Theorem 3.12. Let M be a semiprime Γ-ring and d be a derivation of M such that
(d(x)α)nd(x) = 0 for all x ∈ M . Then, d = 0.

Proof. Since M is semiprime,
⋂

J = 0 where the intersection runs over all prime
ideals J of M . Now, we claim that d(J) ⊆ J for every prime ideal J . Let a ∈ J ,
x ∈ M and α ∈ Γ. Then, 0 = (d(aαx))nd(aαx) = ((d(a)αx + aαd(x)))n(d(a)αx +
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aαd(x)) = (d(aαx)α)nd(a)αx mod J . Thus, in the prime Γ-ring M = M/J ,
((d(a)αx)α)n = 0 for all x ∈ M , α ∈ Γ. Hence, the right ideal d(a)ΓM is a nil
of bounded index n. Therefore, by Theorem 3.1 of [11] has a nilpotent ideal-which
it can not, since it is prime unless d(a) = 0. But d(a) ∈ J . So, d(J) ⊆ J . Hence,
d(J) ⊆ J for all prime ideals J of M and so d induces a derivation on the prime
Γ-ring M = M/J such that (d(x)α)nd(x) = 0 for all x ∈ M , α ∈ Γ. By Theorem
3.11, d(x) = 0. Hence, d(M) = 0, that is d(M) ⊆ J for all prime ideals J of M .
Since ∩J = 0, we get d(M) = 0. Hence, d = 0. ¤
Acknowledgement. The authors are highly grateful to referees for their valuable
comments and suggestions for improving the paper.
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