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FUZZY RELATIONS AND ALEXANDROV L-TOPOLOGIES

Jung Mi Ko a and Yong Chan Kim b, ∗

Abstract. In this paper, we investigate the relationships between fuzzy relations
and Alexandrov L-topologies in complete residuated lattices. Moreover, we give
their examples.

1. Introduction

Pawlak [9, 10] introduced rough set theory as a formal tool to deal with impre-
cision and uncertainty in data analysis. Hájek [3] introduced a complete residuated
lattice which is an algebraic structure for many valued logic. Radzikowska [11] de-
veloped fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated
information systems and decision rules in complete residuated lattices. Lai [7, 8] in-
troduced Alexandrov L-topologies induced by fuzzy rough sets. Algebraic structures
of fuzzy rough sets are developed in many directions [1-13].

In this paper, we investigate the relationships between fuzzy relations and Alexan-
drov L-topologies in complete residuated lattices. Moreover, we give their examples.

2. Preliminaries

Definition 2.1 ([1, 3]). An algebra (L,∧,∨,¯,→,⊥,>) is called a complete resid-
uated lattice if it satisfies the following conditions:

(L1) L = (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and
the least element ⊥;

(L2) (L,¯,>) is a commutative monoid;
(L3) x¯ y ≤ z iff x ≤ y → z for x, y, z ∈ L.
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In this paper, we assume (L,∧,∨,¯,→,∗⊥,>) is a complete residuated lattice
with the law of negation;i.e. x∗∗ = x. For α ∈ L,A,>x ∈ LX , (α → A)(x) = α →
A(x), (α¯A)(x) = α¯A(x) and >x(x) = >,>x(x) = ⊥, otherwise.

Definition 2.2 ([1, 7]). Let X be a set. A function R : X ×X → L is called a fuzzy
relation. A fuzzy relation R is called a fuzzy preorder if satisfies (R1) and (R2).

(R1) reflexive if R(x, x) = > for all x ∈ X,
(R2) transitive if R(x, y)¯R(y, z) ≤ R(x, z), for all x, y, z ∈ X.
We denote R2(x, z) = (R ◦R)(x, z) =

∨
y∈X(R(x, y)¯R(y, z)).

Lemma 2.3 ([1, 3]). Let (L,∨,∧,¯,→,∗ ,⊥,>) be a complete residuated lattice with
a negation ∗. For each x, y, z, xi, yi ∈ L, the following properties hold.

(1) If y ≤ z, then x¯ y ≤ x¯ z.
(2) If y ≤ z, then x → y ≤ x → z and z → x ≤ y → x.
(3) x¯ (

∨
i∈Γ yi) =

∨
i∈Γ(x¯ yi) and (

∨
i∈Γ xi)¯ y =

∨
i∈Γ(xi ¯ y).

(4) x → (
∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(5) (x → y)¯ x ≤ y and (y → z)¯ (x → y) ≤ (x → z).
(6) (x¯ y) → z = x → (y → z) = y → (x → z) and (x¯ y)∗ = x → y∗.
(7) x∗ → y∗ = y → x and (x → y)∗ = x¯ y∗.

Definition 2.4 ([5-7]). A subset τ ⊂ LX is called an Alexandrov topology if it
satisfies satisfies the following conditions.

(T1) ⊥X ,>X ∈ τ where >X(x) = > and ⊥X(x) = ⊥ for x ∈ X.
(T2) If Ai ∈ τ for i ∈ Γ,

∨
i∈Γ Ai,

∧
i∈Γ Ai ∈ τ .

(T3) α¯A ∈ τ for all α ∈ L and A ∈ τ .
(T4) α → A ∈ τ for all α ∈ L and A ∈ τ .

Definition 2.5 ([7]). Let R ∈ LX×X be a fuzzy relation. A set A ∈ LX is called
extensional if A(x)¯R(x, y) ≤ A(y) for all x, y ∈ X.

3. Fuzzy Relations and Alexandrov L-topologies

Theorem 3.1. Let R ∈ LX×X and R−1 ∈ LX×X with R−1(x, y) = R(x, y).
(1) τ is an Alexandrov topology on X iff τ∗ = {A∗ ∈ LX | A ∈ τ} is an Alexandrov

topology on X.
(2) τR = {A ∈ LX | A(x) ¯ R(x, y) ≤ A(y), x, y ∈ X} is an Alexandrov topology

on X. Moreover, τR−1 = {A∗ | A ∈ τR} = τ∗R.

(3) If R is the smallest fuzzy preorder such that R ≤ R, then
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R(x, y) =
∧

A∈τR

(A(x) → A(y)) =
∨

n∈N

(Rr)n(x, y),

where Rr(x, y) = 4 ∨ R(x, y) and 4(x, y) = > if x = y and 4(x, y) = ⊥ if x 6= y.
Moreover,

R
−1(x, y) =

∧

A∈τ∗R

(A(x) → A(y)) = R−1(x, y).

(4) τR = {A ∈ LX | ∨x∈X(A(x)¯R(x,−)) = A} = {∨x∈X(ax ¯R(x,−)} where
R(x,−)(y) = R(x, y) for each y ∈ X.

(5) τR = {A ∈ LX | A =
∧

y∈X(R(−, y) → A(y))} = {∧y∈X(R(−, y) → by)}
where R(−, y)(x) = R(x, y) for each x ∈ X.

(6) τ∗R = {A ∈ LX | ∨x∈X(A(x)¯R(−, x)) = A} = {∨x∈X(ax ¯R(−, x)} where
R(−, x)(y) = R(y, x) for each y ∈ X.

(7) τ∗R = {A ∈ LX | A =
∧

y∈X(R(y,−) → A(y))} = {∧y∈X(R(y,−) → by)}
where R(y,−)(x) = R(y, x) for each x ∈ X.

(8) CτR(A) =
∧{B ∈ LX | A ≤ B,B ∈ τR} =

∨
x∈X(A(x)¯R(x,−)). Moreover,

CτR(A) ∈ τR.
(9) IτR(A) =

∨{B ∈ LX | B ≤ A,B ∈ τR} =
∧

x∈X(R(−, x) → A(x)). Moreover,
IτR(A) ∈ τR.

(10) A ∈ τR iff A = CτR(A) = IτR(A).
(11) CτR(A) = (IτR−1 (A

∗))∗ for all A ∈ LX .

Proof. (1) Let A∗ ∈ τ∗ for A ∈ τ . Since α¯A∗ = (α → A)∗ and α → A∗ = (α¯A)∗,
τ∗ is an Alexandrov topology on X.

(2) (T1) Since >X(x)¯R(x, y) ≤ >X(y) = > and ⊥X(x)¯R(x, y) = ⊥ = ⊥X(y),
Then ⊥X ,>X ∈ τR.

(T2) For Ai ∈ τR for each i ∈ Γ, since (
∨

i∈Γ Ai(x)) ¯ R(x, y) =
∨

i∈Γ(Ai(x) ¯
R(x, y)) ≤ ∨

i∈Γ Ai(y),
∨

i∈Γ Ai ∈ τR. Similarly,
∧

i∈Γ Ai ∈ τR.
(T3) For A ∈ τR, α¯A ∈ τR.
(T4) For A ∈ τR, by Lemma 2.3(5), since α ¯ (α → A(x)) ¯ R(x, y) ≤ A(x) ¯

R(x, y) ≤ A(y), (α → A(x)) ¯ R(x, y) ≤ α → A(y). Then α → A ∈ τR. Moreover
A ∈ τR iff A∗ ∈ τR−1 from:

A(x)¯R(x, y) ≤ A(y) iff R(x, y) → A∗ ≥ A∗(y)
iff A∗(y)¯R(x, y) ≤ A∗(x) iff A∗(y)¯R−1(y, x) ≤ A∗(x).

(3) Define RτR(x, y) =
∧

B∈τR
(B(x) → B(y)). Then RτR is a fuzzy preorder.

Since B ∈ τR and B(x) ¯ R(x, y) ≤ B(y), then R(x, y) ≤ B(x) → B(y). Hence
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R(x, y) ≤ RτR . If P is a fuzzy preorder with R ≤ P , for Pw(x) = P (w, x), then
Pw(x) ¯ R(x, y) ≤ Pw(x) ¯ P (x, y) ≤ Pw(y). Hence Pw ∈ τR. Thus RτR(x, y) =∧

B∈τR
(B(x) → B(y)) ≤ Px(x) → Px(y) = P (x, y). Thus,

R(x, y) =
∧

A∈τR

(A(x) → A(y))

Since Rr(x, y) = 4 ∨ R(x, y), we have (Rr)n(x, x) = > for each n ∈ N . So∨
n∈N (Rr)n(x, x) = >. Since

∨

y∈X

((Rr)k(x, y)¯ (Rr)m(y, z) ≤ (Rr)k+m(x, z) ≤
∨

n∈N

(Rr)n(x, z),

then
∨

n∈N (Rr)n(x, y)◦∨n∈N (Rr)n(y, z) ≤ ∨
n∈N (Rr)n(x, z). Hence

∨
n∈N (Rr)n is a

fuzzy preorder. If R ≤ P and P is fuzzy preorder, then Rr ≤ P and (Rr)n ≤ Pn = P ,
thus,

∨
n∈N (Rr)n ≤ P . Hence R =

∨
n∈N (Rr)n.

R
−1(x, y) =

∧

A∈τ∗R

(A(x) → A(y)) = R−1(x, y).

R
−1(x, y) = R(y, x) =

∧
A∈τR

(A(y) → A(x))
=

∧
A∗∈τ∗R

(A∗(x) → A∗(y)) =
∧

A∈τR−1
(A(x) → A(y))

= R−1(x, y).

(4) Put τ = {A ∈ LX | ∨
x∈X(A(x) ¯ R(x,−)) = A} and τ1 = {∨x∈X(ax ¯

R(x,−))}. Since A ∈ τR, RτR(x, y) ¯ A(x) =
∧

B∈τ (B(x) → B(y)) ¯ A(x) ≤
(A(x) → A(y))¯A(x) ≤ A(y). Hence

∨
x∈X(A(x)¯R(x, y)) ≤ A(y). Since A(y) =

A(y)¯R(y, y) ≤ ∨
x∈X(A(x)¯R(x, y)),

∨
x∈X(A(x)¯R(x, y)) = A(y). Thus, A ∈ τ .

Let A ∈ τ . Since R ≤ R, A(x)¯R(x, y) ≤ A(x)¯R(x, y) = A(y). Thus, A ∈ τR.
Let A ∈ τ . Then

∨
x∈X(A(x)¯R(x, y)) = A(y). Put A(x) = ax. Then

∨
x∈X(ax¯

R(x,−)) ∈ τ1.
Let D =

∨
x∈X(ax ¯R(x,−)) ∈ τ1. Then

∨
w∈X(D(w)¯R(w, y))

=
∨

w∈X

(∨
x∈X(A(x)¯R(x, w))¯R(w, y)

)

=
∨

x∈X(A(x)¯∨
w∈X(R(x,w)¯R(w, y)))

=
∨

x∈X(A(x)¯R(x, y)) = D(y).

Thus, D ∈ τ . Hence τR = τ = τ1.
(5) Put η = {A ∈ LX | A =

∧
y∈X(R(−, y) → A(y))} and η1 = {∧y∈X(R(−, y) →

by)}. Since A ∈ τR, RτR(x, y) → A(y) =
∧

B∈τ (B(x) → B(y)) → A(y) ≥ (A(x) →
A(y)) → A(y) ≥ A(x). Hence A(x) ≤ ∧

y∈X(R(x, y) → A(y)). Since A(y) =
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R(y, y) → A(y) ≥ ∧
y∈X(R(x, y) → A(y)), A(x) =

∧
y∈X(R(x, y) → A(y)). Thus,

A ∈ η.
Let A ∈ η. Since R ≤ R,

∧
y∈X(R(x, y) → A(y)) ≥ ∧

y∈X(R(x, y) → A(y)) =
A(x). Thus, R(x, y) → A(y) ≥ A(x) iff A(x)¯R(x, y) ≤ A(y). So, A ∈ τR.

Let A ∈ η. Then A =
∧

y∈X(R(−, y) → A(y)). Put A(y) = by. Then A =∧
y∈X(R(−, y) → by) ∈ η1.
Let A =

∧
y∈X(R(−, y) → by) ∈ η1. Then

∧
w∈X(R(x, w) → A(w))

=
∧

w∈X(R(x,w) → ∧
y∈X(R(w, y) → by))

=
∧

w∈X

∧
y∈X(R(x,w) → (R(w, y) → by))

=
∧

w∈X

∧
y∈X((R(x,w)¯R(w, y)) → by)

=
∧

y∈X(
∨

w∈X(R(x,w)¯R(w, y)) → by)
=

∧
y∈X(R(x, y) → by) = A(x).

Thus, A ∈ η. Hence τR = η = η1.
(6) It follows from

∨
x∈X(A(x) ¯ R(−, x)) =

∨
x∈X(A(x) ¯ R

−1(x,−)) = A iff
A ∈ τR−1 = τ∗R.

(7) It follows from
∧

x∈X(R(x,−) → A(x)) =
∧

x∈X(R−1(−, x) → A(x)) = A iff
A ∈ τR−1 = τ∗R.

(8) Put B =
∨

x∈X(A(x)¯R(x,−)). Then B ∈ τR from:
∨

w∈X(B(w)¯R(w, y))
=

∨
w∈X

(∨
x∈X(A(x)¯R(x, w))¯R(w, y)

)

=
∨

x∈X(A(x)¯∨
w∈X(R(x,w)¯R(w, y)))

=
∨

x∈X(A(x)¯R(x, y)) = B(y).

If A ≤ E and E ∈ τR, then B ≤ E from:

B(y) =
∨

x∈X

(A(x)¯R(x, y)) ≤
∨

x∈X

(E(x)¯R(x, y)) = E(y).

Hence CτR = B.
(9) Let B =

∧
y∈X(R(−, y) → A(y)) ∈ τR from

∧
w∈X(R(x,w) → B(w))

=
∧

w∈X(R(x,w) → ∧
y∈X(R(w, y) → A(y)))

=
∧

w∈X

∧
y∈X(R(x,w) → (R(w, y) → A(y)))

=
∧

w∈X

∧
y∈X((R(x, w)¯R(w, y)) → A(y))

=
∧

y∈X(
∨

w∈X(R(x,w)¯R(w, y)) → A(y))
=

∧
y∈X(R(x, y) → A(y)) = B(x).
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If E ≤ A and E ∈ τR, then E ≤ B from:

E(x) =
∧

y∈X

(R(x, y) → E(y)) ≤
∧

y∈X

(R(x, y) → A(y)) = B(x).

Hence IτR = B.
(11)

CτR(A) =
∧{B | A ≤ B, B ∈ τRX

}
=

∧{B | B∗ ≤ A∗, B∗ ∈ τR−1
X
}

=
(∨{B∗ | B∗ ≤ A∗, B∗ ∈ τR−1

X
}
)∗

= (IτR−1 (A
∗))∗.

(IτR−1 (A
∗))∗ =

(∧
x∈X(R(x,−) → A∗(x))

)∗

=
∨

x∈X(R(x,−)¯A(x)) = CτR(A).

¤

Theorem 3.2. Let RX and RY be fuzzy relations and f : X → Y a map with
RX(x, y) ≤ RY (f(x), f(y)) for all x, y ∈ X. Then the following equivalent conditions
hold.

(1) f−1(B) ∈ τRX
for all B ∈ τRY

.
(2) f−1(B) ∈ τ∗RX

for all B ∈ τ∗RY
.

(3) RτRX
(x, y) ≤ RτRY

(f(x), f(y)) for all x, y ∈ X.
(4) Rτ∗RX

(x, y) = R−1
τRX

(y, x) ≤ R−1
τRY

(f(y), f(x)) = Rτ∗RY
(f(x), f(y)) for all

x, y ∈ X.
(5) f(CτRX

(A)) ≤ CτRY
(f(A)) for all A ∈ LX .

(6) f(Cτ
R−1

X

(A)) ≤ Cτ
R−1

Y

(f(A)) for all A ∈ LX .

(7) CτRX
(f−1(B)) ≤ f−1(CτRX

(B)) for all B ∈ LY .
(8) Cτ

R−1
X

(f−1(B)) ≤ f−1(Cτ
R−1

Y

(B)) for all B ∈ LY .

(9) f−1(IτRX
(B)) ≤ IτRY

(f−1(B)) for all B ∈ LY .
(10) f−1(Iτ

R−1
Y

(B)) ≤ I−1
τ
R−1

X

(f−1(B)) for all B ∈ LY .

Proof. (1) For all B ∈ τRY
, f−1(B) ∈ τRX

from:

f−1(B)(x)¯RX(x, y) ≤ B(f(x))¯RY (f(x), f(y))
≤ B(f(y)) = f−1(B)(y).

(1) ⇔ (2) It follows from (1) and Theorem 3.1(2).
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(1) ⇒ (3)

RτRY
(f(x), f(y)) =

∧
B∈τRY

(B(f(x)) → B(f(y)))
=

∧
B∈τRY

(f−1(B)(x) → f−1(B)(y))
≥ ∧

A∈τRX
(A(x) → A(y)) = RτRX

(x, y)

(1) ⇒ (5)

CRY
(f(A)) =

∧{B | f(A) ≤ B, B ∈ τRY
}

≥ ∧{B | A ≤ f−1(B), f−1(B) ∈ τRX
}

≥ ∧{f(f−1(B)) | A ≤ f−1(B), f−1(B) ∈ τRX
}

≥ f
(∧{f−1(B) | A ≤ f−1(B), f−1(B) ∈ τRX

}
)

≥ f(CRY
(A)).

(3) ⇒ (5)

CRY
(f(A))(f(x)) =

∨
w∈Y (f(A)(w)¯RY (w, f(x)))

≥ ∨
z∈X(f(A)(f(z))¯RY (f(z), f(x)))

≥ ∨
z∈X(A(z)¯RX(z, x)) = CRX

(A)(x)

(5)⇒ (7) By (5), put A = f−1(B). Since f(CτRX
(f−1(B))) ≤ CτRY

(f(f−1(B))) ≤
CτRY

(B), we have CτRX
(f−1(B)) ≤ f−1(CτRX

(B)).
(7)⇒ (1) For all B ∈ τRY

, CτY (B) = B. Since CτRX
(f−1(B)) ≤ f−1(CτRX

(B)) =
f−1(B), f−1(B) ∈ τRX

.
(1) ⇒ (9)

f−1(IRY
(B))(x) = IRY

(B)(f(x)
=

∨{D(f(x)) | D ≤ B, D ∈ τRY
}

=
∨{f−1(D)(x) | f−1(D) ≤ f−1(B), f−1(D) ∈ τRX

}
≤ ∨{E(x) | E ≤ f−1(B), E ∈ τRX

}
= IRX

(f−1(B)).

f−1(IRY
(B))(x) = IRY

(B)(f(x))
=

∧
w∈Y (RY (f(x), w) → B(w))

≤ ∧
z∈X(RY (f(x), f(z)) → B(f(z)))

≤ ∧
z∈X(RX(x, z) → f−1(B)(z))

= IRX
(f−1(B))(x)

(9) ⇒ (1) For all B ∈ τRY
, IτY (B) = B. Since IτRX

(f−1(B)) ≥ f−1(IτRX
(B)) =

f−1(B), f−1(B) ∈ τRX
.

Other cases are similarly proved. ¤

Example 3.3. Let (L = [0, 1],¯,→,∗ ) be a complete residuated lattice with the
law of double negation defined by

x¯ y = (x + y − 1) ∨ 0, x → y = (1− x + y) ∧ 1, x∗ = 1− x.
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Let X = {a, b, c}, Y = {x, y, z} be sets and f : X → Y as follows:

f(a) = x, f(b) = y, f(c) = z.

(1) Define RX ∈ LX×X , RY ∈ LY×Y as follows

RX =




0.5 0.9 0.1
0.7 0.8 0.5
0.9 0.6 0.7


 , RY =




0.6 0.9 0.7
0.8 1 0.5
0.9 0.7 0.8


 .

Then RX(a, b) ≤ RY (f(a), f(b)) for all a, b ∈ X.

Rr
X =




1 0.9 0.1
0.7 1 0.5
0.9 0.6 1


 , Rr

Y =




1 0.9 0.7
0.8 1 0.5
0.9 0.7 1


 ,

For n ≥ 2, (Rr
X)2 = (Rr

X)n and (Rr
Y )2 = (Rr

Y )n as follows:

(Rr
X)2 =




1 0.9 0.4
0.7 1 0.5
0.9 0.8 1


 , (Rr

Y )2 =




1 0.9 0.7
0.8 1 0.5
0.9 0.8 1


 .

Then

RX =
∨

n∈N

(Rr
X)n = (Rr

X)2,

RY =
∨

n∈N

(Rr
Y )n = (Rr

Y )2.

Moreover,

RτRX
(a, b) =

∧

B∈τRX

(B(a) → B(b)) = (Rr
X)2(a, b)

RτRY
(x, y) =

∧

B∈τRY

(B(x) → B(y)) = (Rr
Y )2(x, y).

Then RτRX
(a, b) ≤ RτRX

(f(a), f(b)) for all a, b ∈ X.
(2)

τRX
= {∨x∈X(ax ¯RX(x,−)}
= {(a1 ¯RX(a,−)) ∨ (a2 ¯RX(b,−)) ∨ (a3 ¯RX(c,−))}

τ∗RX
= τR−1

X
= {∧x∈X(RX(x,−) → ax)}

= {(RX(a,−) → a1) ∧ (RX(b,−) → a2) ∧ (RX(c,−) → a3)}
where ai ∈ L and

RX(a,−) = (1, 0.9, 0.4), RX(b,−) = (0.7, 1, 0.5), RX(c,−) = (0.9, 0.6, 1).

For A = (0.5 ¯ RX(a,−)) ∨ (0.9 ¯ RX(b,−)) ∨ (0.8 ¯ RX(b,−)) = (0.7, 0.9, 0.8) =∨
x∈X(A(x)¯RX(x,−) ∈ τRX

.



FUZZY RELATIONS AND ALEXANDROV L-TOPOLOGIES 255

For B = (RX(a,−) → 0.5) ∧ (0.9 ¯ RX(b,−) → 0.9) ∧ (RX(b,−) → 0.8) =
(0.5, 0.6, 0.8) =

∧
x∈X(RX(x,−) → B(x)) ∈ τ∗RX

.

τRX
= {∧y∈X(RX(−, y) → by)}
= {(RX(−, a) → b1) ∧ (RX(−, b) → b2) ∧ (RX(−, c) → b3)}

τ∗RX
= τR−1

X
= {∨y∈X(RX(−, y)¯ by)}

= {(RX(−, a)¯ b1) ∨ (RX(−, b)¯ b2) ∨ (RX(−, c)¯ b3)}
where bi ∈ L and

RX(−, a) = (1, 0.7, 0.9), RX(−, b) = (0.9, 1, 0.8), RX(−, c) = (0.4, 0.5, 1).

For A = (RX(−, a) → 0.3)∧(RX(−, b) → 0.5)∧(RX(−, c) → 0.2) = (0.3, 0.6, 0.4)∧
(0.6, 0.5, 0.7) ∧ (0.8, 0.7, 0, 2) = (0.3, 0.5, 0, 2) =

∧
x∈X(RX(−, x) → A(x)) ∈ τRX

.

For B = (RX(−, a)¯ 0.3) ∨ (RX(−, b)¯ 0.5) ∨ (RX(−, c)¯ 0.2) = (0.3, 0, 0.2) ∨
(0.4, 0.5, 0.3) ∨ (0, 0, 0, 2) = (0.4, 0.5, 0, 3) =

∨
x∈X(RX(−, x)¯A(x)) ∈ τ∗RX

.

(3)

τRY
= {∨x∈Y (ax ¯RY (x,−)}
= {(a1 ¯RY (x,−)) ∨ (a2 ¯RY (y,−)) ∨ (a3 ¯RY (z,−))}

τ∗RY
= τR−1

Y
= {∧x∈Y (RY (x,−) → ax)}

= {(RY (x,−) → a1) ∧ (RY (y,−) → a2) ∧ (RY (z,−) → a3)}
where ai ∈ L and

RY (x,−) = (1, 0.9, 0.7), RY (y,−) = (0.8, 1, 0.5), RY (z,−) = (0.9, 0.8, 1).

τRY
= {∧y∈Y (RY (−, y) → by)}
= {(RY (−, x) → b1) ∧ (RY (−, y) → b2) ∧ (RY (−, z) → b3)}

τ∗RY
= τR−1

Y
= {∨y∈Y (RY (−, y)¯ by)}

= {(RY (−, x)¯ b1) ∨ (RY (−, y)¯ b2) ∨ (RY (−, z)¯ b3)}
where bi ∈ L and

RY (−, x) = (1, 0.8, 0.9), RY (−, y) = (0.9, 1, 0.8), RY (−, z) = (0.7, 0.5, 1).

(4) For A = (0.2, 0.8, 0.6) ∈ LX ,

CRX
(A) = (0.5, 0.8, 0.6), CRY

(f(A)) = (0.6, 0.8, 0.6)
IRX

(A) = (0.2, 0.5, 0.3), CRY
(f(A)) = (0.2, 0.4, 0.3)

CR−1
X

(A) = (0.7, 0.8, 0.6), CR−1
Y

(f(A)) = (0.7, 0.8, 0.6)
IR−1

X
(A) = (0.2, 0.3, 0.6), IR−1

Y
(f(A)) = (0.2, 0.3, 0.5).
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