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FUZZY RELATIONS AND ALEXANDROV L-TOPOLOGIES

Jung M1 Ko? AND YoNG CHAN Kim P*

ABSTRACT. In this paper, we investigate the relationships between fuzzy relations
and Alexandrov L-topologies in complete residuated lattices. Moreover, we give
their examples.

1. INTRODUCTION

Pawlak [9,10] introduced rough set theory as a formal tool to deal with impre-
cision and uncertainty in data analysis. Héjek [3] introduced a complete residuated
lattice which is an algebraic structure for many valued logic. Radzikowska [11] de-
veloped fuzzy rough sets in complete residuated lattice. Bélohldvek [1] investigated
information systems and decision rules in complete residuated lattices. Lai [7, 8] in-
troduced Alexandrov L-topologies induced by fuzzy rough sets. Algebraic structures
of fuzzy rough sets are developed in many directions [1-13].

In this paper, we investigate the relationships between fuzzy relations and Alexan-

drov L-topologies in complete residuated lattices. Moreover, we give their examples.

2. PRELIMINARIES

Definition 2.1 ([1,3]). An algebra (L,A,V,®,—, L, T) is called a complete resid-
uated lattice if it satisfies the following conditions:

(L1) L =(L,<,V,A, L, T) is a complete lattice with the greatest element T and
the least element L;

(L2) (L,®, T) is a commutative monoid;

(L3)zoy<ziff x <y — z for z,y,z € L.
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In this paper, we assume (L, A,V,®,—,* L, T) is a complete residuated lattice
with the law of negationji.e. 2** = z. For a € L,A, T, € LY, (a — A)(x) = a —
A(z), (a®@A)(z)=a® A(z) and T,(z) =T, T.(xz) = L, otherwise.

Definition 2.2 ([1,7]). Let X be aset. A function R: X x X — L is called a fuzzy
relation. A fuzzy relation R is called a fuzzy preorder if satisfies (R1) and (R2).
(R1) reflexive if R(x,z) = T for all z € X,
(R2) transitive if R(z,y) ® R(y,z) < R(z, z), for all z,y,z € X.
We denote R%(z,2) = (Ro R)(x,2) = Vyex (B(z,y) © R(y, 2)).

Lemma 2.3 ([1,3]). Let (L,V,A\,®,—,*, L, T) be a complete residuated lattice with
a negation *. For each x,y, z,x;,y; € L, the following properties hold.

(1) Ify<z,thenx®Oy<z0®z.

(2) Ify<z,thenx my<x—zandz—x <y— x.

(3) 2O (Vier ¥i) = Vier(@ 0 wi) and (V;er i) ©y = Vier(zi © y).

(4) z (/\zEF i) = /\ier($ — ;) and (\/iEF T) Y= /\iEF(mi —Y).

(B) (@—y)Or<yand(y—2) 0@ —y) < (z—2).

(6)
(7)

(oY) mz=r—-(y—2)=y—(r—2) ad @Oy =z —y"
7) x*

—y'=y—zand (z -y =x0y".

Definition 2.4 ([5-7]). A subset 7 C L¥ is called an Alezandrov topology if it
satisfies satisfies the following conditions.
(T1) Lx, Tx € 7 where Tx(z) =T and Lx(x) = L for x € X.
(T2) If A; e 7 fori €T, \/;cr Ai, Njer Ai € 7.
(T3)a®@Aerforallae Land A € 7.
(T4) a = Aerforallaoe€ Land A e T.

Definition 2.5 ([7]). Let R € L*X*¥ be a fuzzy relation. A set A € L¥ is called
extensional if A(x) © R(z,y) < A(y) for all z,y € X.

3. Fuzzy RELATIONS AND ALEXANDROV L-TOPOLOGIES

Theorem 3.1. Let R € LX*X and R™' € LX*X with R™Y(x,y) = R(x,y).

(1) 7 is an Alezandrov topology on X iff 7* = {A* € LX | A € 7} is an Alevandrov
topology on X.

(2) TR = {A € LX | A(z) ® R(z,y) < A(y),z,y € X} is an Alexandrov topology
on X. Moreover, Tp-1 = {A* | A € Tp} = 7.

(3) If R is the smallest fuzzy preorder such that R < R, then
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Rz,y) = /\ (Al) = A@w) = \/ (B")"(z,y).
A€t neN
where R (x,y) = AV R(z,y) and Az,y) =T if e =y and Az, y) = L if x # y.

Moreover,
——1

R (z,y) = N (Alx) = A(y)) = R~ (x,y).
AeTy

(@) 70 = {4 € LY | Vyex (A() © R(z, —)) = A} = {V,ex (a0 © R(w, -)} where
R(x,—)(y) = R(z,y) for eachy € X.

(5) = {A € IX | A = Apex(B(—y) — AW} = {Ayex (B(—5) — b))}
where R(—,y)(z) = R(x,y) for each z € X.

(6) 7h = 1A € LX | Vpex (A() © (=, 2)) = A} = {V,ex (@ © F(—,2)} where
R(—,z)(y) = R(y,z) for eachy € X.

(1) 7= 1A € LX | A = Aoy (R(y.-) — AW} = {A,ex (Bly.—) — by)}
where R(y,—)(z) = R(y,x) for each z € X.

(8) Crp(A) = N{B € LX | A< B,B € 13} = \,cx(A(z) ® R(z, —)). Moreover,
Crn(A) € TR.

(9) I, (A) = \V/{B € LY | B< A,B € 1p} = N\,cx(R(—,z) — A(z)). Moreover,
I(A) € r.
(10) Ae g iff A=Cr,(A) = I1,(A).
(11) Crp(A) = (Ir,_, (A*))* for all A € LX.

Proof. (1) Let A* € 7* for A € 7. Since a ©A* = (« — A)* and a« — A* = (a© A)*,
7* is an Alexandrov topology on X.

(2) (T1) Since Tx(z)OR(z,y) < Tx(y) =T and Lx(x)OR(z,y) = L = Lx(y),
Then 1Lx, Tx € Tg.

(T2) For A; € 7g for each i € T, since (\/,c.p Ai(2)) © R(z,y) = Vier(Ai(z) ©
R(z,y)) < Vier Ai(), Vier Ai € Tg. Similarly, A, A; € Tr.

(T3) For A€ p, a ® A € TR.

(T4) For A € 7, by Lemma 2.3(5), since o ® (o« — A(z)) ® R(x,y) < A(z) ®
R(z,y) < A(y), (o« — A(z)) © R(z,y) < a — A(y). Then @« — A € 7r. Moreover
Ae g iff A* € g1 from:

A(z) © R(z,y) < A(y) iff R(z,y) — A* > A*( )
iff A*(y) ® R(z,y) < A*(x) iff A*(y) © R~ (y,z) < A*(x).

(3) Define R, (z,y) = /\Bem( (x) — B(y)). Then R;, is a fuzzy preorder.

Since B € 7 and B(z) ® R(z,y) < B(y), then R(x,y) < B(z) — B(y). Hence
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R(z,y) < R;,. If P is a fuzzy preorder with R < P, for P,(x) = P(w,z), then
Py(z) ® R(z,y) < Py(z) ® P(z,y) < P,(y). Hence P, € Tp. Thus R, (z,y) =
Npery(B(x) = B(y)) < Po(x) — Pu(y) = P(z,y). Thus,

R(z,y)= N (A(x) — A(y))

AGTR
Since R"(z,y) = AV R(z,y), we have (R")"(z,x) = T for each n € N. So
\/neN(RT)n(x; x) = T. Since

V (R (@, y) © (R)™(y,2) < (R (x,2) < \/ (R))"(=,2),

yeX neN
then \/, ey (B7)" (@, y)oV e n (B)" (¥, 2) < Vyen (B (2, 2). Hence Ve n(R7)" is a
fuzzy preorder. If R < P and P is fuzzy preorder, then R" < P and (R")" < P" = P,
thus, \/,,cy(R")™ < P. Hence R = \/,,c y(R")".

R (ey) = N\ (A@) = Aw) = B (w,y)
Aery,
R (2.9) = Ry, 7) = Apery (Aly) — A(2))
= Narery,(A%(@) = A*(W)) = Aser,, , (Alz) = Ay))
= R~(z,y).

(4) Put 7 = {4 € I¥ | V,ex(A(2) @ Bz, —)) = A} and 71 = {V,ex(as ©
R(z,—))}. Since A € g, Rry(z,y) © A(z) = Ape,(B(x) — B(y)) ® A(z) <
(A(2) — A(y)) © A(x) < Aly). Hence V,cx(A(2) © R(z,y)) < Aly). Since A(y) =
AW OTW,y) < Vaoex (A@) 0T (,9)), Vyex (A@) 0F(z,)) = Aly). Thus, A € 7.

Let A€ 7. Since R< R, A(z) ® R(z,y) < A(z) ® R(z,y) = A(y). Thus, A € 75.

Let A € 7. Then \/, x(A(z)®R(z,y)) = A(y). Put A(z) = az. Then V¢ y(az®
R(z,—)) € 1.

Let D =\, cx(az ® R(z,—)) € 71. Then

)
Vuex (D (w)®R(w Y))
=Vauex (Veex(A(@) © Ra,w)) © Rw,y))
= Vaex(A(@) ®\/wex( (z,w) © R(w,y)))
= V,ex(A(z) © R(z,y)) = D(y).
Thus, D € 7. Hence T =7 = 771.
(5) Putn={A e L* | A= A cx(R(—y) — A(y))} and m = {A,cx (R(—,y)
by)}. Since A € Tr, Rrp(z,y) — A(y) = Ape,(B(x) — B(y)) — A(y) = (A(z)
A(y)) — Aly) = A(z). Hence A(z) < Ayex(R(z,y) — A(y)). Since A(y)

[
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R(y,y) = Aly) = Nyex(R(z,y) = A(y)), Ax) = A\yex(R(z,y) — A(y)). Thus,
Aen.

Let A € n. Since R < R, /\yeX(R(m,y) — A(y)) > /\yeX(E(m,y) — A(y)) =
A(x). Thus, R(x,y) — A(y) > A(z) iff A(z) ® R(z,y) < A(y). So, A € Tg.

Let A € n. Then A = /\yGX(E(—,y) — A(y)). Put A(y) = by. Then A =
Nyex (B(=,y) = by) € m.
Let A= /\yex(ﬁ(—,y) — by) € m. Then

1 | | I T [
g
m
=
=
8
&
!
~

>>>>>
&
b
= \
< -
m
=
=
2
£
© o !

Thus, A € n. Hence 7 = n = n;.

(6) It follows from \/, . x(A(z) © R(—,z)) = V,ex(A(z) © R
A€Tpa =1h

(7) It follows from A,y (R(z,—) — A(z)) = Njex (R
AcTp =g

(8) Put B =\, cx(A(z) ® R(z,—)). Then B € 7 from:

Vuwex (B(w) © R(w,y))
= Vuex (Veex(A() @ Rz, w)) © Rw,y))
= Viex(4A(z) @ywex(ﬁ T, w
= Viex(Az) © R(z,y)
If A< E and E € 7R, then B < E from:
B(y) = \/ (Az) © R(z,y))

zeX rzeX

Mo, o) = Aiff

o2) - Alz)) = Aiff

I
=
=
©
=
8
s
i
&
>

Hence C7, = B.
(9) Let B = Ay (R(—y) — A(y)) € & from

Nwex (B(z, w) — B(w))

= AwGX(R($? wl_> /\yGX(‘E(w7 y) - A(y)))
— Awex Ayex (Bla,w) — (Rw,y) — A(y)))
= Nwex Nyex ((B(z,w) © RB(w,y)) — A(y))

= — A(y))

Nyex Vuex (B(z,w) © R(w,y))
Nyex (B(z,y) — Aly)) =
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If FE<Aand E € 7, then E < B from:

E(x) = )\ (R(z,y) = E@y) < ) (R(z,y) = A(y)) = B(=).

yeX yeX

Hence I, = B.
(11)
C

TR

(A) =N{B|A<B, Berp,}
= MB|B < A", B €}
= (ViB* | B <A, B e TR;})*
= (I, (A7),
(s (4)" = (Asex (Bl =) — A°(@))
— Viex(R(z, =) © A(2)) = Cry ().

0

Theorem 3.2. Let Rx and Ry be fuzzy relations and f : X — Y a map with
Rx(z,y) < Ry (f(x), f(y)) forallz,y € X. Then the following equivalent conditions

hold.

1) f~Y(B

(2) (B
) Rep, (7,y) < TRY(f(w), f(y)) for all z,y € X.
4) Rr (z

x,y € X.

5) [(Crpy (A)) < Crp (f

6) f(Cr, - 1(4) <

7) Crp (f71(B)

8) C- 1(f "B

)

0

€ Try for all B € TR, .
€ TR for all BeTp .

)
)

(A)) for all A € LX.
- (F(A)) for all A€ L¥.

(N ny (B)) for all B € LY.
f~YC, _,(B)) for all B € LY.

LT 1(B)) for all B e LY.
1 (f7Y(B)) for all B€ LY.

X

(
( C
( )<
(8) Crys (F1(B)) <
(9) (I (B)) < Iy
(10) £, (B) < I;

Proof. (1) For all B € Tg,, f~1(B) € Tr,, from:

f7H(B)(x) © Rx(z,y) < B(f(x)) ® Ry (f(x), f(y))
<B(f(y) =" )-

(1) & (2) It follows from (1) and Theorem 3.1(2).

vy) = R, (y,2) < Ro, (f().f(2)) = Rey (f(2).f(y)) for all
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(1) = 3)
Rep, (F(2), [(y)) = Npery, (B(f(2)) = ( (¥)))
= Npery, (f71(B)(@) = f7H(B)(v))
> Naery, (Al@) = A(y)) Rep (2,9)
1) = (5)

Cry(f(A)) =NBI|f(A) < B, B¢ TRY}

> N(B|A<[(B), /~(B) € )
> NFTHB) A< FAB), fH(B) €y}
> f(NMFUB) A< FUB), FUB) € Try)
> f(Cry (4)).
(3) = (5)
Cry (FAN(@) = Vaey (F(A)(w) © Ry (w, f()))
> Viex TAS() © Ry (7). S(2)))
> Viex(A(2) © Rx(2,2)) = Oy (4)(2)

(A= )
(5) = (7) By (5), put A = f~1(B). Since f(Cry (f~(B))) < Crp,, (f(f71(B))) <

Crpy, (B), we have Cry (f71(B)) < f~H(Cry (B)).

(7):>(1)For allBeTRY Cry(B) = B. Since Crp, (f~1(B)) < fH(Crpn (B)) =
f7HB), f71(B) € TRy

(1) = (9)

(9) = (1) For all B € 7g,, I, (B) = B. Since I, (f~4B)) > f‘l(ITRX (B)) =
f7UB), fH(B) € Ty
Other cases are similarly proved. O

Example 3.3. Let (L = [0,1],®,—,") be a complete residuated lattice with the
law of double negation defined by

rOy=@+y—-1)V0, z—y=1-a+y) Al 2" =1—uz.
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Let X ={a,b,c},Y ={z,y,2z} besetsand f: X — Y as follows:
fla) =z, f(b) =y, f(c) = 2.
(1) Define Rx € L*X*X Ry € LY*Y as follows
0.5 09 0.1 06 0.9 0.7
Rx = 0.7 08 05 |,Ry=1 08 1 0.5 |.
09 0.6 0.7 09 0.7 0.8
Then Rx(a,b) < Ry(f(a), f(b)) for all a,b € X.

1 09 0.1 1 09 07
rRy=|07 1 05 |,R,=|08 1 05|,
09 0.6 1 09 07 1

For n > 2, (R%)? = (R%)"™ and (R})? = (R})™ as follows:

1 09 04 1 09 07
(R)>’=1( 07 1 05 |, (Ry)*=|08 1 05 |.

09 08 1 09 08 1
Then
Rx = \/ (R%)" = (R%)*,
neN
Ry = \/ (R})" = (B}
neN
Moreover,

Rrp (a,b) = N (Bla) = B(b)) = (R%)*(a,b)

BGTRX

Rop, (z,y) =\ (B(z) = Bly)) = (B})*(x,y).

BETRY
Then Ry, (a,b) < R, (f(a), f()) for all a,b € X.
(2)

TRx

(a1 © Rx(a,=)) V (a2 © Rx(b, =) V (a3 © Rx(c, -))}

}\/xex(am © Rx(z,—)}

Thye = Tryt = {Neex(Bx(z,—) = az)} B
={(Bx(a,—) — a1) A (Rx(b,—) — a2) A (Rx(c,—) — a3)}
where a; € L and

Rx(a,—) = (1,0.9,04), Rx(b,—) = (0.7,1,0.5), Rx(c,—)=(0.9,0.6,1).

For A = (0.5® Rx(a,—))V (0.9 Rx(b,—)) V (0.8 ® Rx(b,—)) = (0.7,0.9,0.8) =
Vaex(A(z) © Rx(w,—) € TRy
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For B = (Rx(a,—) — 0.5) A (0.9 ® Rx(b,—) — 0.9) A (Rx(b,—) — 0.8) =
(0.5,0.6,0.8) = A\ cx(Rx(z,—) — B(z)) € Thy

(Bx(=a) —:bl) A (Rx(=,b) = ba) A (Rx (=, c) = b3)}

= {(Rx(=.a) ©b1) V (Rx(=,0) ©®b2) V (Rx(—,c) ® bs)}
where b; € L and

Rx(—,a) = (1,0.7,0.9), Rx(—,b) = (0.9,1,0.8), Rx(—,c)=(0.4,0.5,1).

For A = (Rx(—,a) — 0.3)A(Rx(—,b) — 0.5)A(Rx(—,c) — 0.2) = (0.3,0.6,0.4)A
(0.6,0.5,0.7) A (0.8,0.7,0,2) = (0.3,0.5,0,2) = A\,cx(Rx(—,2) = A(z)) € Try.

For B = (Rx(—,a) ®0.3) V (Rx(—,b) ©0.5) V (Rx(—,c) ®0.2) = (0.3,0,0.2) V
(0.4,0.5,0.3) v (0,0,0,2) = (0.4,0.5,0,3) =\, x (Rx(—,2) © A(x)) € 75, -

(3)

{Vaey (a2 © Ry (x,—)} _
{(a1 ® Ry (2, -)) V (a2 © Ry (y,—)) V (a3 © Ry (2, -))}

TITZY = TRy' T {/\zey(RY(x7:) — az)} B
={(Ry(z,—) = a1) A (Ry(y,—) — a2) A (Ry(z,—) — a3)}

where a; € L and

TRy

Ry (z,—) =(1,0.9,0.7), Ry(y,—) = (0.8,1,0.5), Ry(z,—)=(0.9,0.8,1).

= {Ayey (By(=y) — by)} B
={(Ry(—2) = b1) A(Ry(—,y) — b2) A (Ry(—,2) — b3)}

Thy = = TRyt = {\/er(RY( B y) © by)}

Yy
= {(RY(_vx)le)v(R ( ) )®b2) (EY(_7Z)®b3)}
where b; € L and

TRy

Ry(—,2) = (1,0.8,0.9), R ( y) = (0.9,1,0.8), Ry(—,z)=(0.7,0.5,1).
(4) For A = (0.2,0.8,0.6) €
Cry(A) =(0.5,0.8, 06) =y (f(A)) = (0.6,0.8,0.6)
In (A) =(0.2,0.5,0.3), Cr, (f(A)) = (0.2,0.4,0.3)
Cra(A) = (0.7,0.8,0.6), Cpi(f(A)) = (0.7,0.8,0.6)
I (A) =(02,0.3,06), I 1(f(4)) = (0.2,0.3,0.5).
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