## AN APPLICATION OF THE STRING AVERAGING METHOD TO ONE-SIDED BEST SIMULTANEOUS APPROXIMATION

#### HYANGJOO RHEE

ABSTRACT. For  $t=1,2,\ldots,\ell$ , let  $I_t=(i_1^t,i_2^t,\ldots,i_{\ell(t)}^t)$  be an ordered  $\ell(t)$ -tuple of numbers in  $\{1, 2, \dots, \ell\}$  and let  $T_t$  be chosen from a finite composition of orthogonal projections

$$R_{i_1^t}, R_{i_2^t}, \dots, R_{i_{\ell(t)}^t}$$

 $R_{i_1^t}, R_{i_2^t}, \dots, R_{i_{\ell(t)}^t}$  acting on the normed linear space  $C_1(X)$  to closed convex subset  $S(f_{i_j^t})$  respectively. In this paper, we study the convergence of the sequence

$$x_i = \sum_{t=1}^{\ell} w_t T_t(x_{i-1}), \quad i = 1, 2, \ldots,$$

where  $\sum_{i=1}^{\ell} w_i = 1$  and  $w_i > 0$  for  $i = 1, \dots, \ell$ .

### 0. Introduction

This paper is concerned with one-sided best simultaneous approximation on

$$C(X) = \{f | f \text{ is a real valued continuous function on } X\},$$

where X is a compact subset of  $\mathbb{R}^N$ . We denote that  $C_1(X) = (C(X), \|\cdot\|_1)$  with the  $L_1(X,\mu)$ -norm where  $\mu$  is a finite positive admissible measure defined on X. Then  $C_1(X)$  is not a Banach space and it is a dense linear subspace of  $L_1(X,\mu)$ .

We define a norm on the space of all  $\ell$ -tuples of functions in C(X) as follows:

For any  $\ell$  elements  $f_1,\ldots,f_\ell$  in C(X), let  $F=(f_1,\ldots,f_\ell)$  and

$$||F|| = ||(f_1, \dots, f_\ell)|| = \max_{(w_1, \dots, w_\ell) \in A} || \sum_{i=1}^\ell w_i f_i ||_1$$

where  $A = \{(w_1, \dots, w_\ell) \mid \sum_{i=1}^{\ell} w_i = 1 \text{ and } w_i > 0 \text{ for } i = 1, \dots, \ell\}.$ 

Received by the editors February 15, 2002 and, in revised form, February 6, 2003.

2000 Mathematics Subject Classification. 41A65, 54C60.

Key words and phrases. L<sub>1</sub>-approximation, paracontracting.

This work was completed with the support by a fund of Duksung Women's University.

Now suppose that an  $\ell$ -tuple  $F = (f_1, \ldots, f_{\ell})$  of functions in C(X) is given and S is a finitely generated subspace of C(X). We define the sets, for  $i = 1, \ldots, \ell$ ,

$$S(f_i) := \{ s \in S \mid s(x) \le f_i(x) \text{ for } x \in X \}$$

and the set

$$S(F) := \bigcap_{i=1}^{\ell} S(f_i) := \bigcap_{i=1}^{\ell} \{ s \in S \mid s(x) \le f_i(x) \text{ for } x \in X \}$$

in normed linear space  $C_1(X)$ . By the definitions of  $S(f_i)$  and S(F) above, it is trivial to show that S(F) is non-empty for every  $\ell$ -tuple F of functions in C(X) if S contains a strictly positive function. Throughout this paper we shall restrict to those F for which S(F) is non-empty.

In this paper, we use a new algorithmic scheme for finding one-sided best approximation of an  $\ell$ -tuple F from a set S(F). The new iterative algorithm (the string averaging method of Censor, Elfving & Herman [1] in approximation theory) has been used for solving the convex feasibility problem of finding a point x in the nonempty intersection  $C = \bigcap_{i=1}^m C_i$  of finitely many closed and convex sets  $C_i$  in the Euclidean space  $\mathbb{R}^N$ .

## 1. One-sided best approximation

If  $f^* \in S(F)$ , we define

$$r(F, f^*) := \sup_{g \in F} ||f^* - g||.$$

The Chebyshev radius of F is defined by

$$rad_{S(F)}(F) := \inf_{f^* \in S(F)} r(F, f^*).$$

An element  $f^* \in S(F)$  satisfying  $r(F, f^*) = \operatorname{rad}_{S(F)}(F)$  is called a one-sided best simultaneous  $L_1$ -approximation of F (cf. Park & Rhee [7]). If  $\ell = 1$  (i. e.,  $F = \{f\}$  is singleton), it is called a one-sided best  $L_1$ -approximation (cf. Pinkus [8] and Park & Rhee [7]).

**Definition 1.** Let V be a nonempty subset of a normed linear space Y and  $\mathbf{F}$  be a given family of closed and bounded subsets of Y.

A minimizing sequence  $\{f_n\}$  of F in V is a sequence  $\{f_n\}$  such that  $r(F, f_n) \to \operatorname{rad}_V(F)$  has a subsequence which is convergent in V.

The set V is said to be *cent-compact relative to*  $\mathbf{F}$  if, for each  $F \in \mathbf{F}$ , each minimizing sequence  $\{f_n\}$  in V.

We say that the set V satisfies the *center property* for  $\mathbf{F}$  if, for each  $F \in \mathbf{F}$ , there exists a one-sided best simultaneous  $L_1$ -approximation of F.

Remark 1. For each  $\ell$ -tuple  $F = (f_1, \ldots, f_{\ell})$  of functions in  $C_1(X)$ , a minimizing sequence in S(F) is bounded, so the sequence has a subsequence which is convergent in S(F). Thus we can say that S(F) is cent-compact relative to F.

Mhaskar & Pai [6] has showed that if a closed set V in a normed space Y is cent-compact relative to Y, then V satisfies center property for each family of closed and bounded sets.

Consider a case when  $\mathbf{F} = \{F\}$  is singleton and F is an  $\ell$ -tuple of functions in  $C_1(X)$ . Then S(F) is center-compact relative to  $\mathbf{F}$ . Thus we have the following proposition.

**Proposition 2.** Let F is any  $\ell$ -tuple of functions in of  $C_1(X)$ . Then S(F) satisfies center property for  $F = \{F\}$ .

#### 2. An algorithm for orthogonal projections

Projection algorithmic schemes for the convex feasibility problem and for the best approximation problem are, in general, either sequential or simultaneous or block-iterative. In the following, we explain these terms in the framework of the algorithmic scheme proposed in this paper.

For each  $t = 1, 2, ..., \ell$ , let the *string*  $I_t$  be an ordered  $\ell(t)$ -tuple of numbers in  $\{1, 2, ..., \ell\}$  of the form

$$I_t = (i_1^t, i_2^t, \dots, i_{\ell(t)}^t).$$

We will assume that for any t, the components  $i_j^t$   $(j=1,2,\ldots,\ell(t))$  of  $I_t$  are distinct from each other and every element of  $\{1,2,\ldots,\ell\}$  appears in at least one of the strings  $I_t(t=1,2,\ldots,\ell)$ .

Algorithmic Scheme. Let  $w_t > 0$  (for  $t = 1, 2, ..., \ell$ ),  $\sum_{t=1}^{\ell} w_t = 1$  and  $R_{i_j^t}$  be the metric projection onto  $S(f_{i_i^t})$ . We use iterative steps:

Given 
$$F_0 = (f_1, ..., f_{\ell}),$$

(1) calculate, for all  $t = 1, 2, \ldots, \ell$ ,

$$T_t f_t = R_{i_1^t} R_{i_2^t} \cdots R_{i_{\ell(t)}^t} f_t,$$

(2) and then calculate  $F_1 = \sum_{t=1}^{\ell} w_t T_t f_t;$ 

given the current  $F_k$   $(k \ge 2)$ , iterate

(3) calculate, for all  $t = 1, 2, \ldots, \ell$ ,

$$T_t F_k = R_{i_1^t} R_{i_2^t} \cdots R_{i_{\ell(t)}^t} F_k,$$

(4) and then calculate  $F_{k+1} = \sum_{t} w_t T_t F_k$ .

We demonstrate our algorithmic scheme. For simplicity, we take  $\ell = 1$ . Then we get a one-sided  $L_1$ -approximation (cf. Park & Rhee [7]).

In this framework, we get a simultaneous algorithm by the choice

$$I_t=(t), \quad t=1,2,\ldots,\ell,$$

and a sequential algorithm by the choice

$$I_t = (1, 2, \ldots, \ell).$$

For some case, the sequence  $\{F_k\}$ , generated by the algorithmic scheme, converges to a point  $F^* \in S(F_0)$ , which is a one-sided best simultaneous  $L_1$ -approximation of  $F_0$  in  $S(F_0)$ .

Now we turn to questions of when the sequence  $\{F_k\}$  converges to some element in  $S(F_0)$  and when the sequence converges to a one-sided best simultaneous  $L_1$ -approximation to  $F_0 = (f_1, \ldots, f_\ell)$ .

The subspace S is called a one-sided simultaneous  $L_1$ -unicity space if for each  $F = (f_1, \ldots, f_\ell)$ , there is a unique one-sided best simultaneous  $L_1$ -approximation (cf. Park & Rhee [7]).

The next example satisfies that the sequence  $\{F_k\}$  converges to a one-sided best simultaneous approximation of  $F = (f_1, f_2)$ .

Example 3. Let  $F_0 = (\sin x, \cos x), X = [0, \pi]$  and  $S = \mathbb{R}$  (i. e., S consists of all constant functions). Then S is a one-sided simultaneous  $L_1$ -unicity space for  $C_1(X)$  and

$$S(\sin x) = (-\infty, 0], S(\cos x) = (-\infty, -1].$$

So 
$$S(F_0) = (-\infty, -1]$$
.

Let  $I_t = (t)$ ;  $w_1$ ,  $w_2$  are positive and  $w_1 + w_2 = 1$ . By Algorithm Scheme, we have

$$F_1 = -w_2,$$

$$F_2 = w_1(F_1) - w_2 = w_1(-w_2) - w_2 = -w_2(1+w_1),$$

$$F_3 = w_1(F_2) - w_2 = w_1(-w_2(1+w_1)) - w_2 = -w_2(1+w_1+w_1^2)$$

and therefore we have

$$F_n = w_1(F_{n-1}) - w_2 = -w_2(1 + w_1 + w_1^2 + \dots + w_1^{n-1})$$

for all  $n \geq 1$ . Then the sequence  $F_n$  converges to  $F^* = -1 \in S(F_0)$  and  $F^*$  is a one-sided best simultaneous approximation of  $F_0$  from  $S(F_0)$ .

#### 3. Proofs of convergence

We now turn to prove our results concerning the convergence of  $\{F_k\}$ , generated by algorithmic scheme.

The framework in the previous section does not introduce relaxation parameters into the algorithm. However, according to Censor & Reich [3], we will do so for the special case of orthogonal projections.

We define, for  $i = 1, 2, ..., \ell$ , the algorithmic operators

$$R_i x = x + \alpha_i (P_{S(f_i)} x - x)$$
 for  $x \in \mathbb{R}^{\ell}$ 

where  $\alpha_i$  (0 <  $\alpha_i$  < 2) are fixed for each set  $S(f_i)$ . The algorithmic operators  $R_i$  are called relaxed orthogonal projections.

**Definition 2.** An operator T is said to be *strictly nonexpansive*, if

$$||T(x) - T(y)|| < ||x - y|| \text{ or } T(x) - T(y) = x - y$$

for all x and y.

**Definition 3.** A continuous operator T is said to be *paracontracting*, if for any x and any fixed point y (i. e., y = T(y)),

$$||T(x) - y|| < ||x - y|| \text{ or } T(x) = x.$$

Remark 4. Obviously, a strictly nonexpansive operator is paracontracting. But the inverse implication does not hold (cf. Elsner, Koltracht & Neumann [4, Example 1]).

Next theorem shows that if  $\ell$ -tuple  $F_0 = (f_1, \ldots, f_{\ell})$  consist of constant functions then the sequence  $\{F_k\}$  converges to some element in  $S(F_0)$ .

**Theorem 5** (Censor, Elfving & Herman [1]). Let  $F_0$  be an  $\ell$ -tuple of elements in  $\mathbb{R}$  and S be a closed convex set in  $\mathbb{R}^{\ell}$ . Then the sequence  $\{F_k\}$ , generated by the algorithmic scheme for the relaxed orthogonal projection, converges to a point  $F^* \in S(F_0)$ .

**Corollary 6.** Let  $F_0$  be an  $\ell$ -tuple of elements in  $\mathbb{R}$  and  $S = \mathbb{R}$ . Then the sequence  $\{F_k\}$ , in the above theorem, converges to a point  $F^* \in S(F_0)$ .

By the definition,  $F^*$  is a one-sided best simultaneous approximation for  $F_0 = (f_1, \ldots, f_\ell)$  if and only if  $F^*$  satisfies that  $F^* \in S(F_0)$  attains the supremum in  $\sup_{f \in S(F_0)} \int_X f \, d\mu$ . Obviously, if  $\sup_{f \in S(F_0)} \int_X f \, d\mu = 0$  for all  $f \in S(F_0)$ , then S is not a one-sided simultaneous  $L_1$ -unicity space for  $C_1(X)$ . Equivalently, if

$$\dim S = 1$$
,  $\sup_{f \in S(F_0)} \int_X f \, d\mu \neq 0$  for some  $f \in S$ 

and  $S(F_0) \neq \emptyset$  for any  $F_0 = (f_1, \ldots, f_\ell)$ , then S is a one-sided simultaneous  $L_1$ -unicity space for  $C_1(X)$ .

**Proposition 7.** Suppose that S is the set of all constant functions and let  $\ell \geq 2$  and  $I_t = (t)$ . Then for any  $\ell$ -tuple  $F_0 = (f_1, \ldots, f_{\ell})$  in  $C_1(X)$ , the sequence  $\{F_k\}$ , constructed as in the algorithmic scheme with respect to relaxed projection operators, converges to a one-sided best simultaneous approximation of  $F_0$  from  $S(F_0)$ .

*Proof.* Since S is a one-sided simultaneous  $L_1$ -unicity space and  $S(F_0) = (-\infty, \alpha)$  where

$$\alpha = \min_{i \in \{1,2,\dots,\ell\}} \{ \min_{x \in X} (f_i(x)) \},$$

we have

$$F_1 = \sum_{i=1}^{\ell} w_i \cdot \min_{x \in X} (f_i(x)).$$

If  $F_1 \in S(F_0)$ , then the proof is complete. If  $F_1 \notin S(F_0)$ , (i. e., there exists  $i_0$  such that  $F_1 \notin S(f_{i_0})$ ), then  $F_2 \leq F_1$ . Inductively, if  $F_k \notin S(F_0)$  then  $F_{k+1} \leq F_k$ . So  $F_k$  is decreasing and convergent to a element  $F^*$  in  $S(F_0)$  and  $F^*$  attains the supremum in  $\int_X f \, d\mu$  for all  $f \in S(F_0)$ . Hence,  $F^*$  is a one-sided best simultaneous approximation of  $F_0$  from  $S(F_0)$ .

# 4. Continuity of the projection $P_{S(\cdot)}(\cdot)$

For each  $\ell$ -tuples F of C(X), S(F) is a closed and convex subset of  $C_1(X)$ . The metric projection  $P: F \to P_{S(F)}(F)$  is a set valued map the approximating set depends on some  $\ell$ -tuples F.

Now we consider a continuity of the projection  $P_{S(\cdot)}(\cdot)$ . By Remark 1, S(F) is a cent-compact and convex subset of S. Thus we can show that if the map  $F \to S(F)$  is Hausdorff continuous at  $F_0$ , then the projection  $P_{S(\cdot)}(\cdot)$  is upper semicontinuous at  $F_0$ .

Mabizela [5] proved that for each F, S(F) is a m-dimensional subspace of  $C_1(X)$  with basis  $\{e_1^F, \ldots, e_m^F\}$  with some conditions. Additionally if  $F_n$  converges to  $F_0$  with  $\|e_i^{F_n} - e_i^{F_0}\| \to 0$ , then the map  $S(\cdot)$  is Hausdorff continuous on  $F_0$ .

**Theorem 8.** The metric projection  $P_{S(\cdot)}(\cdot)$  is upper semicontinuous.

*Proof.* It suffices to show that the set

$$P_{S(\cdot)}^{-1}(E) := \{F \mid P_{S(F)}(F) \cap E \neq \emptyset\}$$

is closed in  $C_1(X)$  for any closed set E. Let  $\{F_n\} \subset P_{S(F)}^{-1}(E)$  be a sequence such that  $\{F_n\}$  converge to  $F_0$  with respect to Hausdorff metric, denote that  $H(F_n, F_0) \to 0$  as  $n \to \infty$ . We can pick  $u_n \in P_{S(F_n)}(F_n) \cap E$  for all  $n \in \mathbb{N}$ . Then  $r(F_n, u_n) = \operatorname{rad}_{S(F_n)}(F_n)$  and

$$|r(F_0, u_n) - \operatorname{rad}_{S(F_0)}(F_0)| \le |r(F_0, u_n) - r(F_n, u_n)| + |\operatorname{rad}_{S(F_n)}(F_n) - \operatorname{rad}_{S(F_0)}(F_0)|$$

$$< 2H(F_n, F_0).$$

Thus,  $r(F_0, u_n)$  approach to  $\operatorname{rad}_{S(F_0)}(F_0)$ . Hence  $\{u_n\}$  is bounded and so there is a subsequence  $\{u_k\}$  which is converge to  $u_0 \in S$ . Since the function  $u \to r(F_0, u)$  is lower semicontinuous, we obtain

$$r(F_0, u_0) \le \liminf r(F_0, u_k) = \operatorname{rad}_{S(F_0)}(F_0).$$

Thus  $u_0 \in P_{S(F_0)}(F_0) \cap E$ , that is,  $P_{S(\cdot)}^{-1}(E)$  is closed.

### REFERENCES

1. Y. Censor, T. Elfving and G. T. Herman: Averaging strings of sequential iterations for convex feasibility problems. In: Inherently Parallel Algorithms in Feasibility and

- Optimization and Their Applications, held at Haifa, 2000. Stud. Comput. Math., v. 8 (pp. 101-114). North-Holland, Amsterdam, 2001. MR 2002i:90054
- 2. Y. Censor and A. Lent: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34 (1981), no. 3, 321–353. MR 84a:90064
- 3. Y. Censor and S. Reich: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. *Optimization* **37** (1996), 323–339. MR **98j**:47161
- 4. L. Elsner, I. Koltracht and M. Neumann: Convergence of sequential and asynchronous nonlinear paracontractions. *Numer. Math.* **62** (1992), 305–319. MR **93d:**65057
- S. G. Mabizela: Parametric approximation, Doctoral Dissertation. Pennsylvania State University, University Park, PA, 1991.
- H. N. Mhaskar and D. V. Pai: Fundamentals of approximation theory. CRC Press, Boca Raton, FL; Narosa Publishing House, New Delhi, 2000. CMP 1 887 338
- S. H. Park and H. J. Rhee: One-sided best simultaneous L<sub>1</sub>-approximation for a compact set. Bull. Korean Math. Soc. 35 (1998), no. 1, 127-140. MR 98m:41053
- A. Pinkus: On L<sub>1</sub>-approximation, Cambridge Tracts in Mathematics, 93. Cambridge University Press, Cambridge, 1989. MR 90j:41046

Department of Liberal Arts, Duksung Women's University, 419 Ssangmun-dong, Dobong-gu, Seoul 132-714, Korea

 $Email\ address: \ {\tt rhj@center.duksung.ac.kr}$