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AN APPLICATION OF THE STRING AVERAGING METHOD TO
ONE-SIDED BEST SIMULTANEOUS APPROXIMATION

HYANGJOO RHEE

ABSTRACT. For t = 1,2,...,4, let I; = (i},i5, .. .,i;(t)) be an ordered ¢(t)-tuple of
numbers in {1,2,...,£} and let T} be chosen from a finite composition of orthogonal
projections
Rit,RI:,...,Riz
17 s
acting on the normed linear space C1(X) to closed convex subset S({f;:) respectively.
In this paper, we study the convergence of the sequence ’

£
zi= Y wli(zior), i=12,...,
t=1

where Zf=1w,~=1and w; >0fori=1,...,¢4

0. INTRODUCTION

This paper is concerned with one-sided best simultaneous approximation on
C(X) = {f] f is a real valued continuous function on X},
where X is a compact subset of RY. We denote that C1(X) = (C(X), ||-|l1) with the

Li(X, p)-norm where 4 is a finite positive admissible measure defined on X. Then
C1(X) is not a Banach space and it is a dense linear subspace of Li(X, ).
We define a norm on the space of all ¢-tuples of functions in C(X) as follows:
For any ¢ elements f1,..., fein C(X), let F = (f1,..., f¢) and

Wy ,...,We )E 1

4
V= - Sl = max | S wisy
i=1

where A = {(w1,...,we) | Zlewi: land w; >0fori=1,...,¢}
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Now suppose that an ¢-tuple F = (fi,..., fe) of functions in C(X) is given and
S is a finitely generated subspace of C'(X). We define the sets, for i = 1,...,¢,

S(fi) ={seS|s(z)< fi(z) for x € X}

and the set

¢ ¢
S(F):= [)S(fi): = [{s€S|s(z)< filz) for z € X}
=1

i=1
in normed linear space C1(X). By the definitions of S(f;) and S(F) above, it is
trivial to show that S(F') is non-empty for every ¢-tuple F' of functions in C(X) if
S contains a strictly positive function. Throughout this paper we shall restrict to
those F for which S(F’) is non-empty.

In this paper, we use a new algorithmic scheme for finding one-sided best ap-
proximation of an f-tuple F' from a set S(F). The new iterative algorithm (the
string averaging method of Censor, Elfving & Herman [1] in approximation theory)
has been used for solving the convex feasibility problem of finding a point z in the
nonempty intersection C' = (2, C; of finitely many closed and convex sets C; in
the Euclidean space RV.

1. ONE-SIDED BEST APPROXIMATION

If f* € S(F), we define
r(F, f*) = sup||f* —gl.
geF
The Chebyshev radius of F' is defined by

radg(py(F) : = f,iegf(F)T(F, f).

An element f* € S(F) satisfying r(F, f*) = radg()(F) is called a one-sided best
simultaneous Ly-approzimation of F (cf. Park & Rhee [7]). f £ =1 (i.e., F = {f}
is singleton), it is called a one-sided best Li-approzimation (cf. Pinkus [8] and Park
& Rhee [7)).

Definition 1. Let V be a nonempty subset of a normed linear space Y and F be a
given family of closed and bounded subsets of Y.

A minimizing sequence {fn} of F in V is a sequence {fn} such that r(F, f,) —
rady (F) has a subsequence which is convergent in V.
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The set V is said to be cent-compact relative to F if, for each F € F, each
minimizing sequence {f,} in V.

We say that the set V satisfies the center property for F if, for each F € F, there
exists a one-sided best simultaneous L;-approximation of F.

Remark 1. For each ¢-tuple F' = (f1...., f¢) of functions in C;(X), a minimizing
sequence in S(F') is bounded, so the sequence has a subsequence which is convergent
in S(F). Thus we can say that S(F) is cent-compact relative to F.

Mhaskar & Pai [6] has showed that if a closed set V' in a normed space Y is
cent-compact relative to Y, then V satisfies center property for each family of closed
and bounded sets.

Consider a case when F = {F'} is singleton and F' is an ¢-tuple of functions in
Ci(X). Then S(F) is center-compact relative to F. Thus we have the following

proposition.

Proposition 2. Let F is any {-tuple of functions in of C1(X). Then S(F) satisfies
center property for F = {F}.

2. AN ALGORITHM FOR ORTHOGONAL PROJECTIONS

Projection algorithmic schemes for the convex feasibility problem and for the
best approximation problem are, in general, either sequential or simultaneous or
block-iterative. In the following, we explain these terms in the framework of the
algorithmic scheme proposed in this paper.

For each t = 1,2,...,¢, let the string Iy be an ordered #(t)-tuple of numbers in
{1,2,...,4} of the form

Iy = (i, 1% -, )

We will assume that for any ¢, the components zj (7 =1,2,...,4(t)) of I are distinct
from each other and every element of {1,2,...,£} appears in at least one of the
strings I;(t = 1,2,...,8).

Algorithmic Scheme. Let w; > 0 (for t = 1,2,...,¢), Zlewt =1 and Ry be
J
the metric projection onto S{f;:). We use iterative steps:
7

Given Fy = (f1,..., fe),
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(1) calculate, for all t = 1,2,...,¢,

Tift = Ry Ry - Riz(t)ft’

. _
(2) and then calculate Fy = Y wT;fe;
t=1

given the current Fy (k > 2), iterate
(3) calculate, for all t =1,2,...,¢,

TyFy = Ry Ry - Ry Fy,

Te(e)

(4) and then calculate Fyyq = > w;T; Fy.
t

We demonstrate our algorithmic scheme. For simplicity, we take £ = 1. Then we
get a one-sided Lj-approximation (cf. Park & Rhee [7]).
In this framework, we get a simultaneous algorithm by the choice

L=(), t=12,...,¢
and a sequential algorithm by the choice
I, =(1,2,...,90).

For some case, the sequence {F}}, generated by the algorithmic scheme, converges
to a point F* € S(Fy), which is a one-sided best simultaneous L;-approximation of
Fy in S(Fp).

Now we turn to questions of when the sequence {F;} converges to some element
in S(Fp) and when the sequence converges to a one-sided best simultaneous L;-
approximation to Fy = (f1,..., fe).

The subspace S is called a one-sided simultaneous Li-unicity space if for each
F = (f1,..., fe), there is a unique one-sided best simultaneous L,-approximation
(cf. Park & Rhee [7]).

The next example satisfies that the sequence {Fy} converges to a one-sided best

simultaneous approximation of F = (f1, f2).

Ezample 3. Let Fy = (sinz,cosz),X = [0,7] and S = R (i.e., S consists of all
constant functions). Then S is a one-sided simultaneous L;-unicity space for C;(X)
and

S(sinz) = (—00,0], S(cosz) = (—o0, —1].
So S(Fp) = (—o0, —1].
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Let I; = (t); wi, we are positive and wy + we = 1. By Algorithm Scheme, we

have
B = —wy,
Fy = wi(F1) — wa = wi(~w2) —wy = —wa(1 + wy),
Fy = wi(Fy) — wy = w1 (~wa(l +w1)) — w2 = —wo(l + wy + w?)
and therefore we have
Fo=wi(Fpoy) —w2 = —wa(l +wy + wf 4+ 4 w?'l)

for all n > 1. Then the sequence F,, converges to F* = —1 € S(Fp) and F* is a

one-sided best simultaneous approximation of Fy from S{Fg).

3. PROOFS OF CONVERGENCE

We now turn to prove our results concerning the convergence of {Fy}, generated
by algorithmic scheme.

The framework in the previous section does not introduce relaxation parameters
into the algorithm. However, according to Censor & Reich (3], we will do so for the
special case of orthogonal projections.

We define, for i = 1,2,..., ¢, the algorithmic operators

Rxz=z+ Oti(PS(fi)iL‘ —z) for z € R
where ¢; (0 < oy < 2) are fixed for each set S(f;). The algorithmic operators R; are

called relaxzed orthogonal projections.

Definition 2. An operator T is said to be strictly nonezpansive, if
IT(z) - Tl < llz —yl| or T(x) -T(y) =z —y

for all z and y.

Definition 3. A continuous operator T is said to be paracontracting, if for any =
and any fixed point y (i. e., y = T(y)),
(T(z) —yll <llz —yll or T(z) ==

Remark 4. Obviously, a strictly nonexpansive operator is paracontracting. But the

inverse implication does not hold (cf. Elsner, Koltracht & Neumann [4, Example 1]).
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Next theorem shows that if ¢-tuple Fy = (f1,. .., f¢) consist of constant functions
then the sequence {Fy} converges to some element in S(Fp).

Theorem 5 (Censor, Elfving & Herman [1]). Let Fy be an {-tuple of elements
in R and S be a closed convex set in R. Then the sequence {Fy}, generated by
the algorithmic scheme for the relazed orthogonal projection, converges to a point

F* € S(Fy).

Corollary 6. Let Fy be an £-tuple of elements in R and S = R. Then the sequence
{Fx}, in the above theorem, converges to a point F* € S(Fp).

By the definition, F™* is a one-sided best simultaneous approximation for Fy =
(f1,..., fe) if and only if F* satisfies that F* € S(Fp) attains the supremum in
SUPfes(my) [x f du. Obviously, if supsegip) [y fdu = 0 for all f € S(Fp), then S is
not a one-sided simultaneous Li-unicity space for C;(X). Equivalently, if

dimS =1, sup / fdu#0 forsome feS
feS(F) /X
and S(Fp) # @ for any Fy = (f1,..., f¢), then S is a one-sided simultaneous L;-
unicity space for Cq(X).

Proposition 7. Suppose that S is the set of all constant functions and let £ > 2
and Iy = (t). Then for any -tuple Fy = (fi,..., fr) tn C1(X), the sequence {Fy},
constructed as in the algorithmic scheme with respect to relazed projection operators,

converges to a one-sided best simultaneous approzimation of Fy from S(Fp).

Proof. Since S is a one-sided simultaneous L;-unicity space and S(Fp) = (—o0, @)

where

a= {gr}zlng}{gg{l(fi(x))},

we have
14
Fi = ;- min( f; .
1 ;Zl w ;Iél)x(l(fz(x))

If i € S(Fp), then the proof is complete. If Fy ¢ S(Fp), (i. e., there exists ig
such that Fy ¢ S(fi,)), then Fy < Fy. Inductively, if Fy ¢ S(Fo) then Fiyy < F.
So F} is decreasing and convergent to a element F* in S(Fp) and F* attains the
supremum in [, f dy for all f € S(Fp). Hence, F* is a one-sided best simultaneous
approximation of Fy from S(Fp). a
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4. CONTINUITY OF THE PROJECTION Ps(y(:)

For each ¢-tuples F of C(X), S(F) is a closed and convex subset of C1(X). The
metric projection P : F — Pg(py(F) is a set valued map the approximating set
depends on some £-tuples F'.

Now we consider a continuity of the projection Pg((-). By Remark 1, S(F) is a
cent-compact and convex subset of S. Thus we can show that if the map F' — S(F’)
is Hausdorff continuous at Fp, then the projection Pg.(-) is upper semicontinuous
at Fp.

Mabizela [5] proved that for each F, S(F) is a m-dimensional subspace of C;(X)
with basis {ef,...,ef } with some conditions. Additionally if F;, converges to Fo
with ||/ — ef" | — 0, then the map S(-) is Hausdorff continuous on Fp.

Theorem 8. The metric projection Pg)(-) is upper semicontinuous.

Proof. Tt suffices to show that the set

Piy(E): = {F|Psr)(F)NE # 2}

is closed in C;(X) for any closed set E. Let {Fn} C PS'(})(E) be a sequence such that
{F,} converge to F with respect to Hausdorff metric, denote that H(Fy, Fp) — 0
as n — oo. We can pick un € Pgp,)(Fy) N E for all n € N. Then r(Fy,upn) =
rads(pn)(Fn) and

|r(Fo, un) — radg(gy) (Fo)| < Ir(Fo, un) — 7(Fny un)| + | rads(r, ) (Fr) — rads(r,) (Fo)|
Thus, 7(Fp, un) approach to radg(g,)(Fo). Hence {un} is bounded and so there is a

subsequence {ux} which is converge to ug € S. Since the function u — 7(Fp,u) is

lower semicontinuous, we obtain
T‘(Fo,uo) < lim infr(Fg,uk) = radS(Fo)(FO)'

Thus up € Ps(r,)(Fo) N E, that is, Ps—(?)(E) is closed. )

REFERENCES

1. Y. Censor, T. Elfving and G. T. Herman: Averaging strings of sequential iterations
for convex feasibility problems. In: Inherently Parallel Algorithms in Feasibility and



56

HYANGJOO RHEE

Optimization and Their Applications, held at Haifa, 2000. Stud. Comput. Math., v. 8
(pp. 101-114). North-Holland, Amsterdam, 2001. MR 2002i:90054

Y. Censor and A. Lent: An iterative row-action method for interval convex programming.
J. Optim. Theory Appl. 34 (1981), no. 3, 321-353. MR 84a:90064

Y. Censor and S. Reich: Iterations of paracontractions and firmly nonexpansive operators
with applications to feasibility and optimization. Optimization 37 (1996), 323-339. MR
98j:47161

L. Elsner, I. Koltracht and M. Neumann: Convergence of sequential and asynchronous
nonlinear paracontractions. Numer. Math. 62 (1992), 305-319. MR 93d:65057

S. G. Mabizela: Parametric approzimation, Doctoral Dissertation. Pennsylvania State
University, University Park, PA, 1991.

H. N. Mhaskar and D. V. Pai: Fundamentals of approzimation theory. CRC Press, Boca
Raton, FL; Narosa Publishing House, New Delhi, 2000. CMP 1 887 338

S. H. Park and H. J. Rhee: One-sided best simultaneous L;-approximation for a compact
set. Bull. Korean Math. Soc. 35 (1998), no. 1, 127-140. MR 98m:41053

A. Pinkus: On L;-approxzimation, Cambridge Tracts in Mathematics, 93. Cambridge
University Press, Cambridge, 1989. MR 90j:41046

DEPARTMENT OF LIBERAL ARTS, DUKSUNG WOMEN'S UNIVERSITY, 419 SSANGMUN-DONG, Do-
BONG-GU, SEOUL 132-714, KOREA
Email address: rhj@center.duksung.ac.kr



