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CHAOS AND LYAPUNOV EXPONENT

SE-RA YU AND YON-M1 KM

ABSTRACT. In this paper, we try to approach chaos with numerical method. After
investigating nonlinear dynamics (chaos) theory, we introduce Lyapunov exponent
as chaos’s index. To look into the existence of chaos in 2-dimensional difference
equation, we compute Lyapunov exponent and examine the various behaviors of
solutions by bifurcation map.

1. Introduction

Chaos theory is very important to understand nonlinear equations which repre-
sent complicate phenomena of nature. Lorenz [4] represented clearly that the so-
lutions of simple 3-variable nonlinear differential equations exhibited irregular and
complicate behaviors depending on initial values. While studying the dynamics of
meteorological changes, he found “the sensitivity to initial conditions in chaos” or
“butterfly effect” which means chaos.

In deterministic dynamic system, if the initial conditions can be measured with
accuracy, we will be able to predict the output exactly. But it is impossible to
determine the initial conditions of system accurately. A slight alteration in the initial
conditions can result in enormous differences in the output as the amplification of
error. We call this the sensitivity to initial condition. By this feature, the behaviors
in the system become unpredictable, therefore the system is changed into irregular
system. It follows that although one might be able to predict the states of future
with reasonable accuracy in the short term, long-term predictions are futile.

Chaos is the phenomenon that one can not predict the future state of the sys-
tem for sensitivity in intial condition though it is deterministic system. Chaotic
system exhibits very complex motion that is not random, but there are no pre-

dictable patterns to it. It has the properties such as irregularity of time series,
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non-periodic solution, orbital unstability, finite attractor, impossibility of long-term
predictions, etc.

Chaotic motion is so common in natural and scientific phenomena that many
scientists say that it should be considered to be the rule, rather than the exception, in
the study of natural phenomena. Chaotic motion has been observed in such diverse
areas as fluid dynamics, ecology, optics, the dynamics of the heart and the brain,
astrophysics, buckling beams, oceanography, and nonlinear electrical circuits. For
this reason it is important to gain an understanding of chaotic motion. In chaotic
dynamics one can analyze objects subject to an unpredictable, but not random,
behavior.

In recent years the topic of chaotic dynamics has become increasingly popular.
Applications of chaotic dynamics will extend to disciplines as diverse as weather pre-
diction, orbits of satellites, chemical reactions, and stock market prices. Interested
reader might consult Devaney [1, pp. 52-63] for more detailed explanation.

In this paper, we introduce Lyapunov exponent and period-3 points as numerical
index of the existence of chaos and then actually look into the existence of chaos in
2-dimensional difference equation.

2. Lyapunov Exponent

A difference equation describes functional relation between states according to

discrete time. We consider the first-order difference equation:
Tkl = f((l:k), k= 0, 1, tey (2.1)

where zr, € R and f : R — R is continuous. Let f™ denote the composition of the
function f with itself n times. We call the sequence { f*(z0)}§2, of iterates of zg the
orbit of zo. Sometimes we will write 2 for f¥(zo). In that case, {zr}72, constitutes
the orbit of 2o and (2.1) is deterministic dynamical systems for if initial value zg is
determined, all zj, is determined.

But actually, it is impossible to measure initial conditions exactly. Therefore, it
follows that amplification of error occurs. It leads to the different result and converts
deterministic dynamical system into chaotic system which is unpredictable. We call
this phenomenon sensitivity to initial conditions. We define the following notations

according to Gulick [2].
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Definition 2.1 (Sensitive dependence on initial conditions). Let J be an interval,
and suppose that f : J — J. Then f has sensitive dependence on initial conditions
at  if there is an € > 0 such that for § > 0, there is a y in J and a positive integer
n such that
|z —y| < and |F™(z) — F"(y)| > e.
If f has sensitive dependence on initial conditions at each z in J, we say that f
has sensitive dependence on initial conditions on J, or that f has sensitive depen-

dence.

This property is unique for chaotic system. Although the concept of sensitive
dependence on initial conditions is easy to visualize, actually determining that a
function has sensitive dependence is usually not so simple. In order to understand
and utilize nonlinear dynamic system, it is important that we are able to predict
in advance whether chaos will occur or not. Accordingly, we investigate Lyapunov
exponent and period-3 points as index of the existence of chaos.

Let J be a bounded interval, and consider a function f : J — J having a con-
tinuous derivative. We assume that for each z in the interior of J and each small
enough € > 0 there is a number A\(z) such that for each positive integer n,

If*(@ +¢) = ()| = [*z)]"e. (2.2)
This implies that

. .
so that 7 )~ ()
A=) _ o | S €) = @) | eny
" = lim . = (") (=) (2.4)
If (f*)'(z) # 0, then by taking logarithms and dividing by n in (2.4), we obtain
1 n
Az) = —In|(f*) ()], (2.5)

This leads us to make the following definition.

Definition 2.2 (Lyapunov exponent). Let J be a bounded interval, and f: J — J
continuously differentiable on J. Fix z in J, and let A(z) be defined by

Az) = lim In|(f")(@) (26)

provided that the limit exists. In that case, A(z) is the Lyapunov ezponent of f at
z. If Mz) is independent of z wherever A(z) is defined, then the common value of

A(z) is denoted by A and is the Lyapunov exponent of f.
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Lyapunov exponent A can be considered to measure unstability of orbit. In other
word, we can use it to measure how fast iterates of neighboring points diverge and
how predictable their orbits are. If a given function is simple, we can calculate
Lyapunov exponent using (2.6). If A is negative, then the iterates of neighboring
points remain close together and it means regularity. By contrast, if A is positive,
then the iterates of neighboring points separate from one another. Thus the larger A
is, the greater the loss of information of iterates. Therefore, we say that a function
f is chaotic if f has a positive Lyapunov exponent.

As another method to determine Lyapunov exponent in nonlinear dynamics,
Wolf [7] suggests a way using a time series. This method is described in Figure 1.

Neighboring

I
vt R 'I , N
Neighbaring ;L (4,) Oroit k g%?thbormg |
Orbit ! i {
| 14
. l P ; () L' (ty)
| f X
) J ; !
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6/’11}’/_—>t1 Standard Orbit

ty £y

Figure 1. The procedure of determining Lyapunov exponent.

The following five steps are the procedure of computing Lyapunov exponent.
First, select the closest point from any point g on standard orbit, which is a distance
of L(tg) from to. Second, let L'(¢1) the distance between a point £; on standard orbit
and neighboring orbit after time trianglet. And then calculate the exponential ratio
of L(tg) to L'(t1). Third, select the closest point which satisfies that 6 is minimum
at t; and measure distance L(t;). Fourth, repeat the second step at t; after time
At and then calculate the exponential ratio. Fifth, repeat above procedure M times
and calculate the average exponential ratio. In time, we have the following definition
of Lyapunov exponent A(z).

M

1 L'(t

k=1
where At = t — tx_1, and M is repeated times. L'(tx) and L(tx—1) is calculated

with Euclidean distance.
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One method of displaying the points at which a parameterized family of functions
{fu} bifurcates is called a bifurcation map, and is designed to give information about
the behavior of higher iterates of arbitrary members of the domain of f,, for all values
of the parameter y. The bifurcation map of {f,} is a graph for which the horizontal
axis represents values of u. and the vertical axis represents higher iterates of the
variable (normally z). For each value of p, the map includes (in theory) all points
of the form (u, f;;(z)), for values of n larger than, say, 100 or 200. The reason we
only use the higher iterates of = is that the diagram is designed to show eventual
behavior of iterates, such as convergence or periodicity or unpredictability.

A basic kind of bifurcations is period-doubling bifurcations at which an attracting
period-n cycle becomes repelling and gives birth to an attracting 2n-cycle. It is a
typical pattern where attractor that is not chaotic turns into chaotic attractor. In
addition, there are pitchfork bifurcations, flip bifurcations, explosive bifurcations
and fold bifurcations.

On the other hand, if there exists a point of period-3 in bifurcation map, we
can predict chaos occurs. In bifurcation map where a 3-cycle exists, we can see
an uncountable collection of orbits which do not eventually approach any periodic
pattern, i.e., chaos.

The following theorem implies that the existence of period-3 points is a sufficient
condition for the existence of the chaos in the sense of Li-Yorke [3].

Theorm 2.1 (Chaos in the sense of Li-Yorke [3]). Let J be an interval and let
F :J — J be continuous. If there is a point a € J for which the points b = F(a),
¢ = F%(a), d = F3(a) satisfyingd < a<b<c (ord>a>b>c) then following
properties hold:
(i) For every k =1,2,--- there is a periodic point in J having period k.
(ii) There is an uncountable set S C J (containing no periodic points), which
satisfies the following conditions:
(a) For every p,q € J withp # gq,

lim sup {F"(p) — F™(q)| > 0 and lim sup|F™(p) — F*(q)| = 0.
n—od n—oo
(b) For every p € S and periodic point q € J,
lim sup |F"() - F™(g)] > 0.

Proof. See [3]. O
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3. Numerical Examples

In this section, we shall now attempt to investigate solution’s behaviors where
F : R? - R? and check that chaos occurs by computing Lyapunov exponent. We
start dividing stable region and unstable region. Next, we investigate solution’s
behaviors according to parameter in unstable region by describing bifurcation map
and then determine Lyapunov exponent to check that chaos occurs. Consider the
following two-dimensional difference equation.

{$k+1 = (azk + byk) (1 — azy — byg)

(3.1)
Yk+1 = Tk

This problem possesses no special significance, but was selected for investigation
since it can be reduced to logistic equation, when b = 0, which is one of the most
interesting, dynamical systems and is often used to model population dynamics.
Since we are primarily interested in only the positive solutions of (3.1), we shall
begin by restricting the parameters a and b in the following manner.

Let these parameters lie in the region R of the (a, b)-plane described by
R ={(a,b)|a>0,b>0, a+b<4}.

Under these conditions the set D = {(z,)| 0 < z < , 0 < y < %} is invarient
under F. Let us first examine the qualitative behavior of (3.1) for (a,b) € R.

The local dynamics of difference schemes in a neighborhood of an equilibrium are
dependent upon the Jacobian of the function involved. Computing the two fixed
points of F, we find the trivial one;

zp =y =0

and for a + b > 1 the positive fixed point;
a+b—1
T =Y = ———-
k= Yk (a + b)?
Also, simple calculation shows that

a—2a(az +by)  b—2b(az — by)
DF(z,y) =
1 0

To compute the eigenvalues A1, A2 of F' at a point (z,y), therefore, we let

IDF(z,y) - M| = 0
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to obtain
M — (a - 2a(az + by))) — (b — 2b(az + by)) = 0. (3.2)
Evaluating (3.2) at ¢ = y = 0, we obtain
M _ad-b=0 (3.3)

and we see that for a +b < 1, |A1], |A2] < 1 and thus (0,0) is stable in the region
Ry = {(a,b)]a >0, b>0, a+b < 1}. However, leaving the region R, across the
line @ + b = 1, one eigenvalue becomes greater than 1 making (0, 0) unstable.

Now, we consider another fixed point
b—-1 b—1
Z=(z,z)=(a+ a+ ),

(a+b)?" (a+b)?
whose eigenvalues by (3.3) satisfy '

M+ AN+B=0 (3.4)
where (@+b-2) bla+b-2)
ala+0— a -
A=———* B=—wn—7~, 3.
(a+b) °’ (a + b) (3.5)

Solving (3.4), it is not difficult to check that Z is stable for values of (a,b) close
to the line a + b = 1. However, moving away from this line, there are two ways in

which Z is likely to become unstable;

(i) when both eigenvalues are real and one of them exceeds 1 in norm, while
the other remains less, and

(ii) when both eigenvalues, being complex conjugates, have norm greater than 1.

For case (i) we can find the curve in the (a, b)-plane along which both eigenvalues
are real and one equals 1 in absolute value. Letting the solutions of (3.4) equal %1
yields B+ A + 1 = 0. Substituting the values of A and B given by (3.5) implies
either a + b =1 or b2 — a? +3a — b = 0. The dynamics across a + b = 1 have already
been discussed. The latter path, however, separates stability of Z from instability.
The behavior across this curve will be discussed below.

For case (ii) note that if the solutions of (3.4) are complex and equal 1 in norm
then B = 1, and thus the path described by b + (a — 3)b — @ = 0 also separates
stability of Z from instability. Combining this with the result of case (i), we see
that Z is locally stable in the sub-region Ra of the region R = {(a,b)| a > 0, b > 0,
a + b < 4} pictured in Figure 2.

We shall now attempt to look into solution’s behaviors according to parameters
a,b in unstable regions R3 and Rjy.
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B +(a-3)b-a=0

a+b=1 "]

Figure 2. The boundary of stable and unstable region

In order to investigate the dynamics of (3.1) for (a,b) € Rs, we describe bi-
furcation map and determine Lyapunov exponent to check that chaos occurs. For
(a,b) € R3, we fix b = 0.25 and vary parameter values a, between a = 2.9 and
a = 3.7 crossing from Rj into R3. Bifurcation map is depicted in Figure 3.

29 3.7

Figure 3. Bifurcation map (a = 2.9 ~ 3.7, b = 0.25)

In Figure 2 moving further to the right in R3 means that parameter a increase
from 2.9 to 3.7 in Figure 3. Moving further to the right in Rj3, the stable 2-cycle itself
becomes unstable and a bifurcation into a stable 4-cycle occurs. Passing in this way
through Rj3, we observe successive bifurcation of 2F-cycles. In particular, if b = 0.25
and a = 3.75, the orbit of solutions exhibits the shape of “strange attractor”.
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Figure 4. Strange attractor

Next, we compute Lyapunov exponent varying parameter value a with intial
condition zg = yo = 0.01. The following table (Table 1) is the program! that
computes Lyapunov exponent when we fix b = 0.001 and increase parameter a, from
2.9 to 3.7, by 0.05. |

Lyapunov exponent A according to a is described in Figure 5.

2.9 3.7

Figure 5. Lyapunov exponent

As parameter values a exceeds 3.55, A becomes positive. So we are able to confirm
the existence of chaos in Rj.

1 We have used the Mathematica program for this table and the rest of other figures. Shaw and
Tigg [6] was a helpful guiding book for a nonexpert.
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Table 1. The program that computes Lyapunov exponent

GetLiapunovExp{{x0_,y0_},{a_b_}.eps_tfrom_tstep_,opt ] =
Module[ {x0eps,y0eps,z0eps Imz, lmzeps, pts1,pts2},
(0] =x0, y{0] = y0,
Imz = Table[ {x[i+1],y[+1]} =
{(ax[i] +by[i) * (1 - ax[i] - b y[iD, x[i]},
{1,0,tfrom} },
{={0] .y[0]} = Last[imz];
Imz = Table[ {x[i+1]y[i+1]} =
{(ax[i] +b y[iD) * (1 - ax[i] - b y[iD), x[1]},
{1,0,tstep} J;

pts1 = Last{lmz];
{x[0].y[0]} = (x[0] + eps, y[0] + eps};
lmzeps = Table[
{=lit1]y(it1]) =
{Gxli]+ byl * (1 - ax[i] - byli).x[i]},
{(1,0,tstep} 1
pts2 = Last[lmzeps];
dist] = Sqrt[2*(eps"2)]/. {0 -> 0.000001, 0.0 -> 0.000001};
dist2 = Sqrt] Sum[ (pts1{[i]]-pts2[{i]D"2, {,1,2} ] I.

{0 -> 0.000001, 0.0 -> 0.000001};

Retumn[ Log[dist2/dist] ] ];

LiapunovExpList[{x_,y_},a_b_,eps_tstep imax ] =
Module[{ Lep },
Lep = Table[
GetLiapunovExp[{x,y} ,(a,b} ,eps.i,tstep],
{1,0,imax,tstep} J;
Return{Lep];

LiapunovExpListPlot{ (x_,y_},a_b_,eps_,tstep_,imax_, opt___ ] =
Module[{ Lep },

Lep = Table]

GetLiapunovExp[{x,y}.{a,b} ,eps,itstep],

{1,0,imax,tstep} ),

ListPlot[Lep, opt, PlotJoined -> True];
Retumn{Lep),
L

(continued)
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Table 1 (continued)

LiapunovExpAvg[{x_,y_}.,a_,b_.eps_,tstep_,max_] =
Module[{ Lep },
Lep = Table[
GetLiapunovExp|[ (x,¥},{a,b} eps.itstep],
{1,0,imax tstep} ];
Retum[Apply[Plus,LepJ/Length[Lep]];
JF
LiapA = Table[ LiapunovExpAvg[{0.01,0.01},a,0.001,0.001,30,100],
{a,2.9,3.7,0.05} ];

ListPlot[LiapA, PlotJoined -> True,
Frame -» True,
Epilog -> {RGBColor[1,0,0],Line[ {{0,0},(100,0}}1} ]

From now, we shall look into the dynamics of (3.1) for (a,b) € R4 pictured in
Figure 1. We fix a = 0.1 and vary parameter values b, between b = 2.4 and b = 3.8,
passing from Ry into R4. The bifurcation map of solutions is described in Figure 6.

X

0.25

0.2

0.1

0.05

2.4 38

Figure 6. Bifurcation map (a = 0.1,b = 2.4 ~ 3.8)

If we look Figure 6 carefully, we can find a point of period-3 and it implies that
chaos occurs. As we move deeper into R4, the visual shape of these trajectories
changes in the manner plotted in Figures 7~11. At first, the curves and cycles
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possess well formed circular shapes, but moving further into R4, although still re-

maining stable, they develop 4-cycle and 8-cycle. Gradually they tend to fill the

SE-RA YU AND YON-M1 KM

plane developing 2*-cycle as (a,b) moves deeper into Rj.

The stability of these curves and cycles vanishes and chaos appears, if (a,b) is
moved far enough into R4. The various behaviors of solutions with intial condition

zg = yo = 0.01 are described in Table 2.

Table 2. The solution’s behaviors according to a¢ and b.

a b Behaviors Graph
0.1 3.0 stable continuous curve Figure 7
0.1 3.25 4-cycle Figure 8
0.1 3.4 8-cycle Figure 9
0.1 3.5 2k_cycle Figure 10
0.1 3.9 chaos Figure 11

Lyapunov exponent computed according to b is described in Figure 12. As we
know from Figure 12, Lyapunov exponent A becomes positive as b exceeds 3.56.
Therefore we can predict the existence of chaos in unstable region R4.

y
0.25 —
0.2 5 )
et
0.15
X
0.05 0.15 0.2 0.25
0.05

Figure 7. Stable continuous curve
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Figure 11. Chaos
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Figure 12. The Lyapunov exponent
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4. Conclusions

In this paper, we tried to approach chaos using numerical method. Lyapunov
exponent are useful in case we can not prove analytically chaos’s existence or the
problems are given as not specific equation but as many data. Actually, to look into
the existence of chaos in 2-dimensional difference equation, we determined Lyapunov
exponent and examined behaviors of solutions by bifurcation map. We can see
period-3 points in bifurcation map of region where chaos occurs. The existence of
period-3 points is a sufficient condition for the existence of chaos. It is a prospective
problem for us to investigate the relation between the existence of chaos and the
existence of period-3 points in two- or three-dimensional difference equations.
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