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A RADO TYPE EXTENSION OF HOLDER’S INEQUALITY

ErN GuN KwoN aND KANG HEE YOON

ABSTRACT. An extension of Hélder’s inequality whose discrete form is described
as follows is given. Let v be a positive measure on a space Y, v(Y) # 0, and let
fi 3 =1,2,--,n) be positive v-integrable functions on Y. If a; > 0(j = 1,2,--+,n)
and B; (j = 1,2,-- -,k < n) are related to be
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1. Introduction

Throughout the paper, we let X = (X,S, 1) and Y = (Y, 7T, v) be o-finite mea-
sure spaces with positive measures g and v. When we call f defined on X x Y
measurable it refers to (S x T)-measurable. x X v denotes the product measure of
u and v (see [R, Chapter 7]). We discard the obvious case v(Y) = 0.

If 0 < z < 1, then Hdlder’s inequality says that

[ nwriwr-=a) < ([ Awaw ) ([ o )H (L1)

for all positive functions f; and fo of L!(v). It is known that (1.1) can be extended
to the case of a multiple product of functions [BB]. (1.1) was generalized in [K1] to
the following theorem.
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Theorem A (Continuous form of Holder’s inequality [K1, Theorem 1]). Let u(X)
= 1. Let f(z,y) .be a positive measurable function defined on X x Y. Then

/Yexp (/Xlog fdp) v < exp{/Xlog (/deu> du}. (1.2)

FEquality holds in (1.2) as a nonzero finite value if and only if
f(z,y) = g(z)h(y) almost everywherey X v

for a positive p-measurable function g with —co < [ x log gdp < 0o and a positive
v-measurable h with [, hdv = 1.

As is well known, the arithmetic-geometric mean inequality (abbreviated as AM-
GM hereafter) is of the form

n 1 k¢3
G, = Hmjl/“ < EZ&UJ = A,
7j=1 7j=1

for n positive real numbers z1,23,---,Z,. It has played a central role in the de-
velopment of the theory of inequalities. We refer to the book “Inequalities” by
Beckenbach and Bellman [BB], where one can find interesting collections of dif-
ferent proofs for what is so called “probably the most interesting and certainly a
keystone of the theory of inequalities” [BB, p3|. Also, we refer to the classical book
“Inequalities” of Hardy, Littlewood and Polya [HLP]. Among various generaliza-
tions and extensions of AM-GM, the arithmetic-geometric mean inequality, there
are the inequality of Rado and the inequality of Popoviciu. The inequality of Rado
(see (BB, p12, Eq. (4)] or [HLP, p61]) extends AM-GM to

(n - 1)(An—1 - Gn—-l) < n(An - Gn)a

and the inequality of Popoviciu [P] extends AM-GM to

<[ = .
Gn-—l - Gn

If0 < u(X;) < 00,0 < v(Y1) <oo, X1 CX,Y1 CY and f is a positive function
of L'(p x v), then we denote Gx, f and Ay, f respectively by
du(z)

GX1f(y) = exp/X IOg f(way) ;UJ(—X;)-, Y€ Y, (13)
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and
dv(y)
v(Y1)’

Ay, f(z) = y fz,y) zeX. (1.4)

(1.3) and (1.4) are defined almost everywhere because

fo(y) = flz,y), yeY, and fy(z)=f(z,y), z€X,

are functions respectively of L!(u) and L'(v) almost everywhere (see [R, Theorem
7.8]). These are the geometric mean (with respect to X;) of f at y and the arithmetic
mean (with respect to Y7) of f at . When f is a function of single variable, we use
Gx,f, Ay, f, etc. Mixed means such as Gx(Ay f) and Ay (Gx f) are defined by the
obvious meanings. If 0 < v(Y') < 0o, (1.2) can be expressed as

Ay(Gxf) < Gx(Ayf). (1.5)

It is worth while to see that Holder’s inequality is expressible in terms of the arith-
metic inequality and the geometric inequality.

If f is a p integrable function on X, we denote

My f=My(f, X /fq )du(z

for 0 < ¢ < 00 and

M3 = Mol ) = exp ( [ 1og f(o)aute) ).
_ X
Then as the same manner Rado’s and Popoviciu’s inequalities extend AM-GM, the
following extends (1.5).

Theorem 1. If X is a u-measurable subset of X, then we have

L MUMYS) | () (1 ) M3<M;1f>>
MY(Ef) = ) ' MY, (M)

for all ¢ : 0 < g < 00 and for all positive function f of L*(p X v).

Corollary. Ifa; >0 (j =1,2,--,n) and B; (j = 1,2,---,k < n) are related to
be

b

o; =1 and B = ——1—
Z Z] 1a.7
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then

L Iy (I3 f5()*)" dv(y)
I3 (fy fiw)dv(y)™

k[, R (6») aw)
" IT; (fy £@) av(v))”

> (1.7)

forallg:0< q<oo.

2. Jensen’s inequality

We call {X;, X2} a measurable partition of X if X;, X, are measurable subsets
of X, XN Xy =0, and X; U Xy = X. For the proof of Theorem 1, we make use

of the following variant of Jensen’s inequality.

Lemma B [K2|. Let f be a real function of L*(u). Let {X1, X2} be a measurable
partition of X with u(X1) =a and pu(Xs) =b—a,0<a < b < co. If ¢ is a convez
function defined on an open (possibly infinite) interval containing f(X), we have

o s wo( [,
[ dosauz b¢</xfb ad /lea . (2.1)

If ¢ is a concave function defined on an (possibly infinite) open interval containing

F(X), we have
) _ dp
ermeon([1%)-os([ 1%) w

Note that the limiting case u(X1) = @ = 0 of (2.1) is nothing but Jensen’s
inequality.

Remark. If we take ¢(t) = €', and f(z) = log g(z), then (2.1) becomes

‘

d d
/gdu—/ gdﬂzbexp</ logg—u)—aexp(/ logg—p'), (2.5)
X X1 X b X1 a

that is,
bAxg—aAx,g > bGxg—aGx,g

a

or, equivalently,

X
Axg—Gxg > l—;% {Ax,9 - Gx,9}-
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This is a continuous form of the classical Rado’s inequality on AM-GM discussed

in Section 1.

3. Proof of the results

Proof of Theorem 1. Let E = {z € X : M{ f(z)is undefined or M} f(z) = oo}.
Then v(E) = 0. Thus we may assume E = {) in proving (1.6) because Gxf =
Gx-gf, Gx.f=Gx,-pf, Gx(Myf)=Gx-p(Myf) and Gx,(Myf)=
GXI_E(M;I,f). Let

f(=z,y)

g(z) = A @) z e X.

Then (2.5) becomes

f(z,y)
. MEf(@) @)

> b exp (/1 M;fy) duéw)) — a exp </ log Mé/wfz;)) duém)) .

Taking integration with respect to dv(y) over Y on both sides of (3.1), we have, by

(3.1)

changing the order of integration, that

_ fy fidv
:U‘(X2) - X, fy fq dv

f? du f? dp
>b/exp/long du—a/exp/ loqu dl/
Y X1

=b/Yexp (/X(log f?—log Mlq,f)—b—)d

—a/ exp( (log f? —log Mfﬂf)qﬁ> dv
Y X, b
d d
y exp [, log Mg f£ yexpfxllogM}q,f—éi
Jy(Mo(£, X)) [y (Mo(f, X)) %

dp

= MO, (F,7), %) T Mo(M(fY), X)
Therefore e (MO f M (Mo 5
y (Mx,
w(X2) > M(X)m - #(Xl)m,
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which is equivalent to

_ M3 (M%f) My (M3, f)
uX) (1 M%(M;*,f))z“(xﬂ(l M%I(Mé,f))

This verifies (1.6). O

Proof of Corollary. By taking X = {1,2,---,n}, X3 = {1,2,---,k} (where k <
n), f(z,y) = fz(y),z € X, and dy = Zj a;dpi, with dp; the unit mass concen-
trated at j, (1.6) reduces to (1.7). O
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