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FRACTAL HEDGEHOGS

MaMTA RANI AND VINOD KUMAR

ABSTRACT. The study of fractal hedgehogs is a recent development in the ambit
of fractal theory and nonlinear analysis. The intent of this paper is to present a
study of fractal hedgehogs along with some of their special constructions. The main
result is a new fractal hedgehog theorem. As a consequence, a fractal projective
hedgehog theorem of Martinez-Maure is obtained as a special case, and several
fractal hedgehogs and similar images are discussed.

1. INTRODUCTION

In 1874, Weierstrass (1815-1897) astounded the mathematical world by publish-
ing an ingenious example of a continuous function, which is nowhere differentiable
(see Theorem 1 below). A large number of his mathematical findings became pos-
sessions of the mathematical world, not through publication by him, but through
notes taken of his lectures. It was in his lecture of 1861 that he first discussed his
example of a continuous nondifferentiable function, which was finally published in
1874 (see Eves [3]).

Theorem 1 (Weierstrass Theorem, cf. Martinez-Maure [15]). Let f be a real func-
tion of the form

+00
f(z) = z a” cos(b"rz) (1)

n=0
where a € [0,1], b is an odd natural number and ab > 1+ 37/2. The function f is

continuous everywhere and differential nowhere.
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Note. See Theorem 2 as well. For another example of everywhere continuous and
nowhere differentiable function due to van der Waerden, one may refer to Goldberg
[4, pp. 256-258], and for a constructive example to Munkers [17, p. 297).

Fractal hedgehogs have been studied by Langevin, Levitt & Rosenberg [6] and
Martinez-Maure [7}-[16]. Some fractal hedgehogs look like a Koch curve (cf. Peitgen,
Jiirgen & Saupe [18]). Using the example given in Theorem 1, Martinez-Maure [15]
has recently constructed a fractal projective hedgehog (c¢f. Theorem 3) in a plane.
In this paper, we generalize Theorem 3 to obtain a fractal hedgehog theorem (cf.
Theorem 5). Further, we construct various hedgehogs using different parameters of
Theorem 5. Surprisingly, one of the constructions is akin to the Indian mythological
divine weapon Sudarsana Cakra (cf. Figure 6) and similar others may be obtained
as its variants. Interestingly, one of the invalid constructions looks like Asok Cakra.

2. PRELIMINARIES

Consider a 2n-periodic real function, which is of class C! on the real line and
defines a curve C' C R? as an envelope of the family of lines. Let S denote the unit
sphere of 2-dimensional Euclidean space.

For any h € CY(S%;R), i. e., h is a continuously differentiable function (see
Martinez-Maure [15]), let Hj, denote the envelope of the family of lines given by

z cosf + ysind = p(8), (2)

where p(6) = h(cos6,sinf). Then Hj, is said to be projective when p is a Mbius
function, that is a function such that for any 6, p(6 + 7) = —p(9).
Differentiating (2) partially yields

~zsind + ycosf = p'(6). (3)
From (2) and (3), the parametric equations for Hj are
z = p(6) cos§ — p'(8) sin 6 and y = p(8) sin 6 + p'(6) cos . (4)

Following Martinez-Maure [7]—{15], we present an example of a hedgehog. Sup-
pose Hp, has a well-defined tangent line at the point (x,y), say T. Then T can be
expressed by (2). The unit vector u() = (cos6,sinf) is normal to T’ and p(6) may
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be interpreted as the signed distance from the origin to 7. Thus a singularity-free
plane hedgehog is simply a convex curve (see Figure 1).

Figure 1. Singularity-free plane hedgehog

For an excellent analysis on the basic concepts of hedgehogs, one may refer to
Langevin, Levitt & Roserberg [6] and Martinez-Maure [7]-[16] and references thereof.

3. FRACTAL HEDGEHOGS

The following result is derived from Theorem 1.

Theorem 2 (Martinez-Maure [15]). Let p be a real function of the form

b0 =3 () sinteno)

n=1
where (3 is an odd natural number and o is a real number such that o > B and
5% > (1 +37/2). The function p 1s of class C! on R but its derivative is nowhere
differentiable.

Using the function, p(f) in Theorem 2, Martinez-Maure [15] gave the following
significant result.

Theorem 3. There exists a fractal projective hedgehog Hy, C R2. More precisely, if
p(0) = h(cos#,sin 6)

s a Mébius function of the form
400 1
p0)= 3 (o ) sinemo),
n=1
where 3 is an odd natural number and o is a real number such that o > 8 and
B2 > a(1 + 37/2) then the hedgehog Hj, satisfies the following properties.
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(i) The curve Hy, is continuous but nowhere differentiable.
(ii) The curve Hy, has infinite length.

First we present an extension of Theorem 2.

Theorem 4. Let g be a real function of the form

=3 (&) sneo), ©)

n=1
where  is an odd integer and o a positive real number such that oo > |B| and
8% > a(1 + 37/2). Then the function q is of class C! on R but its derivative is

nowhere differentiable.

Proof. Let u,(8) = (1/a™)sin(8"8). Then u, € C! on R and

Wl (6) = (é>ncos(ﬂ"0).

a

By the Weierstrass M-test, > u,(0) and ) u,(0) are uniformly convergent since
0 < 1/a < 1 and 0 < |B/a] < 1. Therefore, ¢'(f) is continuous. In view of
Theorem 1, ¢’(6) is nowhere differentiable. 0O

Remark 1. If 3 is an odd positive integer then evidently Theorem 2 is a special case
of Theorem 4.

Remark 2. Thus the derivative of ¢(6) given by

70 =3 (£) costso) ©)

n=1

is nowhere differentiable.
Now we are in position to present the main fractal hedgehog theorem.

Theorem 5. There exists a fractal hedgehog Hp C R%. More precisely, if q(8) =
h(cos8,sin @) is a function of the form

+00

10) = 3 () sn(e), @

n=1
where B is an odd integer and o a positive real number such that a > |B| and
B% > a(1+3m/2), then the hedgehog satisfies the properties (i) and (ii) of Theorem 3.
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Proof. The function ¢(#) defined in equation (5) is of class C' and, by Theorem 4,
¢'() is nowhere differentiable. Therefore the natural parameterization of Hj, viz.,

zp I =1[0,27] » Hy C B2, 0+ (z}(6),22(9)) = q(0)u(6) + ¢'(8)v'(8),

where u(6) = (cos,sin#), is continuous and nowhere differentiable. This proves (i)
of Theorem 3. 0

Figure 2. A fractal hedgehog for (n,a, 8) = (4,10, —9)
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Figure 3. Star: A fractal hedgehog for (n, o, 8) = (1,10, -9)

If (ii) is not true, then let L(h) be the length of Hy. Then

L(h) =sup Y _ ||lza(05) — za(85-1)
P =

where P = {fo,...,0,} is a partition of the closed bounded interval I. This says
that L(h) is the total bounded variation of the components of z, = (z1,2). (For
details of relationship between “bounded variation” and “differentiability”, one may
refer to Bachman, Narici & Beckenstein [1]). Hence functions z} and z? are almost
everywhere differentiable on I. This contradicts the fact that =, = (z},z2) is

nowhere differentiable.

Remark 3. The function ¢ need not be Mébious. Of course, if 3 is restricted to odd
naturals, then ¢ is Mébious, and in this case the hedgehog obtained in Theorem 5

becomes projective. Indeed, in such a situation, Theorem 5 reduces to Theorem 3.

4. GRAPHICAL ANALYSIS OF HEDGEHOGS

The hedgehog obtained in Theorem 5 presents fascinating approximate figures by
assigning various numerical values to the parameters n, o and 3. Our constructions
are based on an algorithm (see Section 5), which is implemented in C++. The
fractal hedgehog H}, obtained in Theorem 5 is drawn using (4) with p replaced by
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Figure 4. A fractal hedgehog for(n, o, 8) = (4,12, -9)

q and relations (5) and (6). Needless to say that larger the value of n, better the
approximation of Hy. For a somewhat average fair approximation of Hp, a peculiar

picture is Figure 2, when (n, o, 8) = (4, 10, -9).

Remark (on parameter). Here we study each of the three parameters n, o, 3 of the
fractal hedgehog defined in Theorem 5 by graphical analysis.

4.1. Merging of spokes and size factor: n.

Following the algorithm (cf. Section 5), we have generated several projective and
- non-projective hedgehogs. We have studied their pattern and compared them. Only
a few of them are included in this paper. Our observations and remarks presented
below are solely based on this kind of graphical analysis.
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Figure 5. A fractal hedgehog for (n,a, ) = (4,14, -9)

As a first significant observation, we find that the parameter n is responsible for
the size of a figure and merging of spokes in a sector of a figure. There are nine
sectors in each of Figure 2-Figure 5. Each sector consists of several spokes. As
the value of n increases, the spokes in each sector come closer to each other. At
n = 1, the merging in each sector is maximum and a sector now looks like a single
spoke. Comparing Figure 2 and Figure 3 for (n,o,8) = (4,10,-9) and (1,10, -9)
respectively, we see that a fractal hedgehog looking like a wild cactus converts into
a star by changing the parameter n. Further, it is remarkable to see that greater

the value of n, larger the size of the whole figure and its vice versa.

4.2. Scaling factor: a.

The parameter a works purely as a scaling factor for hedgehogs generated for the
same value of 8. Greater the value of o, smaller the size of figure and its vice-versa.
It seems that figures scale down at different o’s for the same 3. This conclusion
is based on the pattern of Figure 2, Figure 4 and Figure 5, which are generated
respectively at a = 10,12,14, when (n,8) = (4,-9). Further this fact may be
verified for any value of a, of course 3 satisfying the conditions of Theorem 5.
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Figure 6. Sudarsana Cakra a fractal projective hedgehog for
(n,a, B) = (2,2005,—2001)

4.3. Number of sectors and size factor: g.
Recall from Theorem 5 that:

(i) B is an odd integer,
(i) 16| < o,
(iii) B2 > a(1 + 37/2).
It has been found that the number of sectors in a fractal hedgehog is equal to |8
Further, the size of a figure increases as |3| increases. Notice that if 3 is large then
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the number of sectors will also be large. So, in case [ is large, each sector appears

to be condensed accordingly.

The parameter 3 will be called valid if it satisfies the conditions (i)—(iii) and
invalid otherwise. We have found that invalid values of [ generate nice figures as
well. So we now classify the constructions into two categories, viz., those obtained

from valid and invalid values of 8.

Figure 7. Aséka Cakra for (n,a, B) = (1,14,12)
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Remark (Valid values of 3). If 8 > 7 or 8 < —7 then the algorithm works well and
figures are generated for any n, @ > 1. For all B > 7, we get fractal projective
hedgehogs for any n, a > 1. Besides Figures 2, 3, 4 and 5, we generate a fractal
hedgehog in Figure 6 when (n,a,8) = (2,2005,-2001), which looks like Indian
mythological divine weapon Sudarsana Cakra.

Remark (Invalid values of 5). When the computer program for valid values of 8 is
run for invalid values of 3, we get some fascinating figures. In fact, figures generated
for invalid values of § are so beautiful that one is tempted to have a look at them.

If 8 fails to satisfy any of the three conditions (i)—(iii), the function g(f) need
not belong to C. For 7 > 3 > ~7, there is no « to satisfy all the three conditions
and this is a failure of 3. By graphical analysis, we find that for an even |3|, the
total number of sectors in the figure is 2|3|, for any n, & > 1. See Figure 7 when
(n,a,B) = (1,14,12). Notice that this choice of 8 is invalid. In this figure, there
are 24 sectors, and their tips are on a circle, which gives it a look of Asoka Cakra,
the symbol of pride in the national flag of India. Further, Figure 8 and Figure 9
show some interesting objects for invalid values of 8 when (n,a, 8) = (6,8, —2) and
(5, 8, 3) respectively.

5. ALGORITHM

This algorithm generates fractal hedgehogs for the function ¢(#) define by (7) of
Theorem 5. Comment lines are preceded by //.

// 1 and b variables replace  and 5. j is the angle and xc and yc are center
// coordinates of hedgehogs. q and q1 correspond to q(#) and q'(d).

n=

yc=220
// Computation starts from here
for a=1 to 360

j=3.14*a/180
q=0
1=0
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for i=1 ton
t=(b)i*j
// calculation of g(#)
g=q+(0.128) *sin(t)
// calculation of q'(#)
qi=q1+(0.125*b) *cos(t)
End for
x1=16"(q"cos (j)-q1*sin{j))
yi=16* (q*sin(j)+ql*cos(j))
x=xc+x1
y=yc-yl
line(x, y, xc, ye)

End for

Figure 8. (n,a,8) = (6,8, -2)
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Figure 9. (n,a, ) = (5,8,3)

6. CONCLUDING REMARKS

The work in this paper is inspired by Martinez-Maure’s paper [15] on fractal pro-
jective hedgehogs. Qur generalization of Maure’s theorem embodies non-projective
fractal hedgehogs as well.

We have come up with a new algorithm to generate fractal hedgehogs. All fractal
projective hedgehogs given in Martinez-Maure [15] may also be generated by our
algorithm. Length of each hedgehog is infinity provided n is very large.

Weierstrass’ everywhere continuous and nowhere differentiable function is the
- backbone of the study of hedgehogs presented in this chapter. Now the natural
question is: Can we obtain hedgehogs using “nowhere differentiable functions” other
than that of Weierstarss?
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Now we pose a few questions for further work. What is fractal or topological
dimension of a fractal hedgehog? Are dimensions of projective and non-projective
hedgehogs different?
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