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CHARACTERIZATION OF CR SUBMANIFOLD IN A COMPLEX
PROJECTIVE SPACE IN TERMS OF RICCI TENSORS

YEONG-WU CHOE & HYUNJIN LEE

ABSTRACT. Let M be an n-dimensional CR submanifold of CR dimension n — 1 of a
complex projective space M. We charaterize M of M in terms of an estimations of
the length of the derivative of Ricci tensor or of the length of Ricci tensor.

1. Introduction

Let M be a connected real n-dimensional submanifold of real codimension p
of a complex manifold M with complex structure J. If the maximal J-invariant
subspace JT, (M) N T, (M) of T, (M) has constant dimension for any z € M, then
M is calld a CR submanifold and the constant is called the CR dimension of M
[2, 10]. Now let M be a CR submanifold of CR dimension n — 1 of M. Then M
admits an induced almost contact structure (cf. [11, 13]). A typical example of CR
submanifold of CR dimension n — 1 is a real hypersurface. Hereby we may expect
to generalize some results which are valid in real hypersurface to CR submanifold of
CR dimension n — 1. When the ambient manifold M is a complex projective space,
real hypersurfaces are investigated by many authors (cf. [1, 4, 5, 6, 7, 8, 9, 12]).

On the other hand, Kimura and Maeda provided some characterizations of ge-
odesic hyperspheres in complex projective space in terms of Ricci tensor S. They
obtained an estimate of | V.S|| which characterized geodesic hyperspheres in complex

projective space. We here recall their work.
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Theorem A [4]. Let M be a real hypersurface with constant mean curvature in
ntl

P> (C),n>5. Then

IVS2 z%’—j—f)(tml — WM ATY))
X {n—z'_l(tI‘Al—-Ul(AlUl))— tI‘(FAlvUIAl)}. (1)

Moreover, the equality of (1) holds if and only if M is locally congruent to a geodesic
hypersphere of P"_;‘I(C) provided that u'(AU}) is constant.

Here we review the work of Cecil and Ryan [1], and Kon [8]. They defined
pseudo-Finstein real hypersurface M in PnTH(C), that is,

SX =aX +bg(X,J&)J& (2)
for some smooth functions a and b on M. The theorem is as follows:

Theorem B [1, 4|. Let M be a connected real hypersurface Pp‘ﬁﬂ(C'), n > 5, which
Ricci tensor S satisfies the above equation (2). Then M is locally congruent to one
of the following:
(i) a geodesic hypersphere,
(i) @ tube of radius r over a totally geodesic P*(C), 0 < k < 23, where
0<r<%andcot’r=k/((n—1)/2—k),
(iii) a tube of radius v over a complex quadric Q™~1/2 where 0 < r < Z and
cot? 2r = "7‘3

The purpose of the present paper is to study some characterizations of CR sub-
manifold in P%E(C) in terms of an estimate of ||VS||, that is, the length of the
derivative of the Ricci tensor (cf. Theorem 1) and in terms of an estimate of ||S|],
the length of the Ricci tensor (cf. Theorem 2).

2. Preliminaries

Let (M, J, g) be an (n + p)-dimensional almost Hermitian manifold and let M
be a connected n-dimensional submanifold of M with induced metric g. For z € M
we denote by T,(M) and T; (M) the tangent space and normal space of M at z,

respectively. Next, we assume that

dim (JTo(M) N To(M)) =n — 1,
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that is, M is CR submanifold of CR dimension n — 1. This implies real dimension
of M is odd [2, 11].

We note that the definition of CR submanifold of CR dimension n — 1 meets the
definition of CR submanifold in the sense of Bejancu [14].

Furthermore, our hypothesis implies that there exists a unit vector field £; normal
to M such that JT' (M) C T(M) & span{{;}. Hence, for any tangent vector field
X and for a local orthonormal basis {£g; = 1,---,p} of normal vectors to M, we
have the following decomposition in tangential and normal components:

JX = FX +u}(X)& and Jgg = —Us+ P, f=1,--,p. 3)

Then it is easily seen that F' and P are skew-symmetric endomorphisms acting on
T.(M) and T3 (M), respectively. Moreover, the Hermitian property of J implies

9(FUg, X) = —u!(X)g(é1, P&p), (4)

9(Up, Uy) = 6py — G(PE&p, P&y). (5)
From g(JX,&g) = —g(X, J€s), we get

9(X,Up) = u*(X)d1s,

and hence
g(Ul)X):ul(X) and UB:O; ﬂ:2,...,p'

Next, applying J to (3) and using (4), the first equation of (3) yields
F2X = - X +u (X)Uh, v (X)P& = —ul(FX)&. (6)
Since P is skew-symmetric, the second equation of (6) gives
WMFX)=0, P& =0, FU; = 0. (1)
So, the second equation of (3) may be written in the form
J&r=-Ur and Jé5 = Pég; f=2,--,p ®

and further, we may put

P
Pég =) P&y, B=2,p
y=2
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where (Pg,) is a skew-symmetric matrix which satisfies
Z PpyPyy = ~0pyu-
5

These results imply that (F, U, u!, g) defines an almost contact metric structure
on (M,g) [13].

Now, let V and V denote the Levi Civita connection on M and M, respectively
and denote by D the normal connection induced from V in the normal bundle
T+ (M) of M. The Gauss and Weingarten equations are

VxY =VxY +h(X,Y) and vaB =—-AgX +Dxés, [=1,---p

for any tangent vectors X,Y to M. Here h denotes the second fundamental form
and Ag is the shape operator corresponding to £g. They are related by

M@

g AgX Y
B=1

Furthermore, putting
p
Dx&s = Z Sﬁ'y(X)f'ya

y=1
it is easy to show that (sg,) is the skew-symmetric matrix of connection forms of
D.

Finally, if the ambient space M is a Kaehler manifold of constant holomorphic
sectional curvature 4, the Gauss, Codazzi, Ricci equations, Ricci tensor and the
scalar curvature are respectivgly given by

R(X,Y)Z =9(Y,Z)X — 9g(X,Z)Y + g(FY,Z)FX — g(FX,Z)FY
—29(FX,Y)FZ +Y g(AsY,Z)AsX = 9(AsX, Z)ApY,

(VxADY ~ (Vy AD)X = g(X, U1)FY — g(Y,U))FX — 29(FX,Y)U1,

.g(Rl(X,Y)gﬁ’{l) = g([AlaAﬁ]X7Y) for :8 = 2a Dy (9)

S(X,Y)
= (n+2)g(X,Y) = 3u'(X)u' (Y) +)_(tr Ag)g(ApY, X) =) _ g(45°Y, X),
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and
p=(n+3)(n—1)+) (trdg)? - > trag’, (10)

for any tangent vector fields X, Y, Z to M [2, 3, 11]. Here R denotes the Rimannian

curvature tensor of M and R+ is the curvature tensor of the normal connection D.

3. Submanifolds of P*#*(C) in terms of VS

In this section we consider the case of a complex projective space M = P™3* (C)
of constant holomorphic sectional curvature 4. Then by differentiating (3) and (4)

covariantly, using VJ.= 0, and by comparing the tangential and normal parts, we

obtain
(VyF)X = UI(X)A1Y - g(AlX, Y)Ul, (11)
(VYul)(X) = g(FAlan)v (12)
VxUl = FA1X (13)

and
p
9(AgU1, X) ==Y " s1,(X)Pys; B=2,---,p (14)
y=2

for any tangent vectors X,Y to M.
On the other hand, the almost contact metric structure (F,U;,u',g) is said to
be normal if the tensor field N defined by

N(X,Y) = [FX,FY] - FI[FX,Y] - FIX,FY] + F2[X,Y] + 2du*(X,Y)U: (15)

vanishes identically [11, 14]. By using (7), (8), (11), (12) and (15), we can easily
prove the following lemma.

Lemma A [3, 11]. Let M be an n-dimensional CR submanifold of CR dimension
n — 1 in a complex space form. If the normal vector field &1 is parallel with respect
to the normal connection, then (F,Ui,ul,g) is normal if and only if A, and F

commute.

From the proof of Lemma A it follows that A;U; € ker F and hence we have
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Lemma B [11]. Under the hypothesis of Lemma A, Uy is an eigenvector of Ay for
any x € M. Therefore, we put

A1U1 = OéUl.

In what follows we suppose that M is an n-dimensional submanifolds of P"_?Z(C’)
with parallel normal vector field & with respect to the normal connections, that is,

Dx& = 0. Consequently, we get
S1y :0) 7:27;1)
and hence, from (14), we have

AﬁUl =0, ﬂ =2, 5P (16)

Theorem C [4]. Let M be a real hypersurface of Pﬁ;_l(C). Then M is locally
congruent to a geodesic hypersphere in pﬁz_l (C) if and only if the Ricci tensor S of
M satisfies

(VxS)Y = c(g(FX,Y)U; +u*(Y)FX) for any X,Y € T(M),

where ¢ is a non-zero constant.

Lemma C [6, 7, 9]. If & s a principal curvature vector, then the corresponding

principal curvature o is locally constant.
Thus we have the main theorem:

Theorem 1. Let M be a CR submanifold of P%E(C’), n > 5 with constant hg =
tr Ag; 8 = 1,--+,p. If Uy is principal of A1 and & is parallel normal vector field
with respect to the normal connection. Then the following inequality holds:
IVSIZ > 30t (41 F)2 + S hstr (Vidg)? — 43 hatr (A5(Vidg)?)
+2 Z tr (A52(ViAﬂ)2) +2 Z tr (Ag(ViAg))z

p
—12[(h1 — ) {tr (A1 F?) — tr (A1 FVy, A} + ) hptr (F2 A% Ap)
p=2

=Y tr(F?A2Ap%) — tr (AL F A1 (Vy, A)))- (17)
B=2
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In the case p = 1, the equality in (17) holds if and only if M is locally congruent
to a geodesic hypershere of P*% (C).

Proof. Firstly let us suppose that hg is constant for any 8 = 1,---,p. Throughout
this paper, we regard that any X and Y belong to T(M). From (10) we have

= (n+2)X = 3u'(X)Ur+ Y _(trAg)AgX - Ag°X. (18)
Differentiating (18) covariantly, we obtain
(VxS)Y = ~3¢(Y, VxU1)Us — 3u'(Y)VxUs + > hs(VxAg)Y
=D (VxAp)AgY = > Ag(VxAp)Y. (19)
Using (13), we get
(VxS)Y = =3g(Y,FALX)U; — 3u' (Y)FAL X + ) hp(VxAg)Y
— > (VxAg)AgY = > As(VxAp)Y. (20)
Putting X = e; and Y = U in (20), we have
(ViS)Ur = —3¢(Uy, FAre)Us — 3u'(U1)FAre; + Y hs(Vidg)Us
= (ViAp)AgUs = Y Ag(ViAp)Uy.
From which, using (8) we have
(ViS)Uy = —3F Are; + > ha(ViAp)Ui
= (Vidp)AgUs = > Ap(Vidg)Un.

Let ey, -, en be local fields of orthonormal vectors on M. Making use of (20),
we define the following tensor 7' on M by

T(X,Y) = (VxS)Y +3g(Y, FA X)Uy + 3u! (Y)FA X = ) hs(VxAg)Y
+ Z(VxAg)AﬁY + ZAﬁ(VXAB)Y‘
Now we have then, by a straightforward computation

IT||* = Zg (eir¢5), T(eise5))

:Zg ((V;iS)e;j, (V~S e; 4—92:92 FAe;, ej)
+QZ g(FAie;, FAje;) + Zhg 9((ViAp)ej, (V;Ag)e;)
+ ZQ((V’AB)ABCJ'~ (Vidg)Age;) + > 9(As(Vidg)e;, Ap(ViAp)e;)
+6Y g((ViS)ej, Ur)g(FArei, €;) + 6D ul(e;)g((ViS)e;, Fhe;)
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—2) hsg((ViS)e;, (Vidp)e;) +2 g((ViS)e;, (Vidp)Ape;)

+2 Zg((V,-S)ej, Ap(ViAg)e;) + 18 Z u'(e;)g(FAie;, e;)g(U, FAse;)
-6 Z hag(FAve;,e;)9((ViAg)e;, Ur)+ GZg (FAiei, e;)g(Ur, (ViAg)Age;)
+6  g(FAiei,e;)g(Ur, Ag(Vidple;) +6 > u'(e;)g(FAies, (ViAg)Age;)
- 6Zhgu e;)9(FAei, (ViAg)e;) +6Zu e;)g(FAre;, Ag(V;Ag)e;)
—2) hag((ViAp)e;,(Vidg)Age;) +2 ) g((Vidg)Ape;, As(ViAp)e;)
— 2> hg((Vidg)e;, Ap(ViAp)e;).

From (8) and the Codazzi equation (9), we get, for each 1,

(21)

(V;A1)Ur = (Vy, 41)e; — Fe;. (22)
Also, we have from (13) and (16)
(ViAg)Uy = —AgFAje;, B=2,---,p. (23)
Then we have, by using (21), (22) and (23),
7|12 = [|VS||?> — 30tr(AL F)? + 12(hy — a)tr (AL F?)
= hg’tr(Vidp)®) +4 ) hgtr(As(Vidg)?)
—2Ztr Ag*(V;Ap)? —2Ztr (Ap(V:Ag))?

+12 Z hatr(A;2FAgF) — 12 Z tr(A12FAg*F)
B=2 B=2
- 12tI‘(A1FA1(VU1A1)) ot 12(h1 — a)tr(AlFVUIAl).

Since ||T)|2 > 0, we have
VS| > 30tr (A, F)? — 12(hy — a)tr (A1 F?) + Y b’ tr(ViAp)?
—4Zh5tr Ap(V; Ag +22tr Ag VAg) )

+2Ztr A/jVAg —12ZhﬁA1 FABF)
B=2

p
+12 ) tr(A1*FAg F) + 12tr (A, F A1 (Vy, Ay))
B=2
+12(hy — @) tr (41 FVy, 4y). (24)
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Furthermore, by Lemma C, (24) can be rewritten as

IVS||? > 30tr (A1 F)? — 12(hy — a)tr A, F? + Zhgztr (V;Ap)?
—4Zh5tr Ag(VAg +2Ztr A5 VAQ) )

+2Z tr( Aﬁ (V; Aﬁ — 12Zhﬁtr F2A12A3)
B=2

p
+12)  tr(F2A,°Ag”) + 12t (A1 F A1 (Vy, Ay))
B=2
-+ 12(h1 - a) tr (AvaUlAl)

= 30tr (M F)? + > hg’tr(Vidg)? =4 hatr(Ag(V;iAp)?)
+22tr (Ap%(ViAp)? —|-2Ztr Ap(ViAp))?

- 12{2 hatr (F2A;%Ag) — Z tr(F2A4,245%)

B=2 B=2
- tI‘(AlFAI(leAl)) + (hl b a) tr (Ale)
- (hl - Oé).tl‘ (AvaUlAl)}‘ (25)

Therefore, the required inequality (17) follows from (25). The equality of (17) is
given by (19). Hence, in the special case p = 1, Theorem C shows that the equality
of (17) holds if and only if M is locally congruent to a geodesic hypersphere. [J

From Theorem 1 we have:
Corollary 1. Let M be a submanifold satisfying the assumption of Theorem 1. If
M has the normal almost contact metric structure (F,Uy,ut, g). Then the following
inequality holds:
IVSI? > hg’tr(Vids)® =4 hgtr(Ap(ViAp)?)
+23 tr(Ag%(Vidp)?) +2  tr(As(Vidp))?, (26)
where hg = trAg for=1,---,p

Proof. Suppose M has the normal almost contact metric structure (F,U,u!,g).
Using Lemma A and Lemma C, we get A1 F = 0. Hence, from Theorem 1 we have
the required result (26). O
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4. Pseudo-Einstein submanifold in P%E(C)

Here we shall prove the following theorem:

Theorem 2. Let M be a CR submanifold of P%E(C), n > 5. Then the following
holds:

ISI? > (ST + (o~ (ST, -

where p is the scalar curvature of M. The equality of (27) holds if and only if M is
of pseudo-FEinstein.
Proof. We first remark that the following are equivalent:

(A) $X =aX + bul(X)U1 X for any X € T(M),

(B) ¢(SX,Y) = Ag(X,Y) for any X,Y L U; and Uj is an eigenvector of S.

We here rewrite the condition
g(SX,Y) = Ag(X,Y) for any X, Y L U

as the following propositions:
(I) g(SX,Y) = Ag(X,Y) for any X,Y L Uy, or g(SX,Y) = pog(X,Y) for any

X,Y LUy, where po = == (p — g(SU1,Un)).

(I1) g(SX —u}(X)SUL, Y —u}(Y)U1) = pog(X —u(X)U1,Y —ul(Y)u;) for any
X, Y € T(M). '

(1) SX — poX — u*(X)SU; — u(SX)U;1 + (u*(SUL)po)ut(X)U; = 0 for any
X, Y e T(M). '

Now we define the tensor T for any X,Y € T(M) as follows:

T(X,Y)=g(SX,Y) — pog(X,Y) — v (X)g(SU1,Y)
—u!(SX)g(Ur,Y) + (v' (SUL) + po)u' (SUL)g(U1,Y).

Calculating the length of 7', we find
IT)1? =ISII* — 29(SUL, SUL) + 2p0u(SUL) + (n — 1) — 2p0p + (u' (SUL))?

=ISI? ~ (o~ wH(STL))? - 2ST | + (w (ST1))?.
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Since ||T||> > 0, we have
1
ISIP 2 —(p — ul(STL))? + ST — (w(ST)) (29

Now we calculate | SU1||2.

ISULI? =g(SUL, STL) = g(D_ 9(SUL, e)ei, SUL)
= Z 92(5U1, €i)

n—-1

= ¢*(SUs, &) + g*(SUL, U)
i=1
n—1

= Z g2 (SU, e;) + (UI(SUl))z-
i=1

Thus we get
ISUL|? > (u!(SUL))*. (29)

Hence from (28) and (29) the required inequality (27) follows. Now the equality
of (27) holds if and only if M is of pseudo-Einstein. [
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