ON FUZZY QUOTIENT RINGS AND CHAIN CONDITIONS

KYOUNG HEE LEE

ABSTRACT. We prove some characterizations of rings with chain conditions in terms of fuzzy quotient rings and fuzzy ideals. We also show that a ring R is left Artinian if and only if the set of values of every fuzzy ideal on R is upper well-ordered.

1. Introduction

The pioneering work of Zadeh on fuzzy subsets of a set in [20] and Rosenfeld on fuzzy subgroups of a group in [18] led to the fuzzification of algebraic structures. For example, Liu [9] introduced the notion of fuzzy ideal of a ring. Since then, the notions of prime fuzzy ideal, maximal fuzzy ideal, fractionary fuzzy ideal and fuzzy invertible fractionary fuzzy ideal were introduced in [6, 12, 19] and applied in [5, 7, 13, 14]. Also, Malik [11], Mukererjee and Sen [15] studied rings with chain conditions with the help of fuzzy ideals and the notions of fuzzy quotient rings were introduced by Kumar [3], Kuroaka and Kuroki [4].

In this paper, we examine some properties of fuzzy quotient rings. We use these results to characterize rings with chain conditions in terms of fuzzy quotient rings and finite (or well-ordered) valued fuzzy ideals. We also show that a ring R is left Artinian if and only if the set of values of every fuzzy ideal on R is upper well-ordered, which is a generalization of Theorem 3.2 of Malik [11] and a new characterization of left Artinian rings.

Let R be a ring with identity. A fuzzy subset of R is a function from R to [0,1]. Let μ and ν be fuzzy subsets of R. We write $\mu \subseteq \nu$ if $\mu(x) \leq \nu(x) \ \forall x \in R$. If $\mu \subseteq \nu$ and there exists a $x \in R$ such that $\mu(x) < \nu(x)$, then we write $\mu \subset \nu$. We denote

Received by the editors October 12, 1999, and in revised form May 3, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16P20, 16P40, Secondary 16D25.

Key words and phrases. fuzzy quotient ring, fuzzy ideal, Artinian rings, Noetherian rings, upper well-ordered.

the image of μ by Im (μ) , and for $t \in [0,1]$, let $\mu_t = \{x \in R \mid \mu(x) \geq t\}$, a level subset of μ .

We let χ_W denote the characteristic function of a subset W of R. A fuzzy subset μ of R is a fuzzy left (right) ideal of R if for every $x, y \in R$, $\mu(x-y) \ge \min\{\mu(x), \mu(y)\}$ and $\mu(xy) \ge \mu(y)$ ($\mu(xy) \ge \mu(x)$). A fuzzy subset μ is a fuzzy left ideal if and only if $\mu(0) \ge \mu(x) \, \forall x \in R$ and μ_t is a left ideal of $R \, \forall t \in [0, \mu(0)]$. A fuzzy subset μ of R is a fuzzy ideal of R if it is a left and right fuzzy ideal. We say that μ is finite-valued if $\text{Im}(\mu)$ is a finite set. For a function f from a set f to a set f, a fuzzy subset f of f is called f-invariant if for all f if it satisfies the ascending chain condition (resp. descending chain condition) on left ideals of f is finite.

2. Preliminaries

In this section, we explain some basic definitions and results which will be used in the later section.

Definition 2.1 [4]. Let X and Y be two sets and f a function of X into Y. Let μ and ν be fuzzy subsets of X and Y, respectively. Then $f(\mu)$, the *image* of μ under f, is a fuzzy subset of Y defined by

$$f(\mu)(y) = \begin{cases} \sup_{f(x)=y} \mu(x) & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

for all $y \in Y$. The preimage $f^{-1}(\nu)$ of ν under f is a fuzzy subset of X defined by

$$f^{-1}(\nu)(x) = \nu(f(x))$$
 for all $x \in X$.

Lemma 2.2. Given a homomorphism of rings $f: R \to R'$ and a finite-valued fuzzy left ideal μ of R, $f(\mu_t) = f(\mu)_t$.

Proof. Let $x \in f(\mu_t)$. Then x = f(z) for some $z \in \mu_t$ and $f(\mu)(x) = \sup_{f(z)=x} \mu(z)$ $\geq t$. Thus $f(\mu_t) \subseteq f(\mu)_t$.

Conversely if $y \in f(\mu)_t$, then $f(\mu)(y) = \sup_{f(x)=y} \mu(x) \geq t$. Since μ is finite-valued, there exists a $x \in f^{-1}(y)$ such that $\mu(x) \geq t$. Thus $f(\mu)_t \subseteq f(\mu_t)$. \square

Definition 2.3 [3]. Let μ be a fuzzy ideal of R and let $x \in R$. Then the fuzzy subset μ_x^* of R defined by

$$\mu_x^*(r) = \mu(r-x)$$
 for all $r \in R$

is termed as the fuzzy coset determined by x and μ . The set of all fuzzy cosets of μ in R is a ring under the binary operations

$$\mu_x^* + \mu_y^* = \mu_{x+y}^* \text{ and } \mu_x^* \mu_y^* = \mu_{xy}^* \quad \forall x, y \in R$$

and it is denoted by R_{μ} . We call it the fuzzy quotient ring of R induced by the fuzzy ideal μ .

Theorem 2.4 [3]. Let μ be a fuzzy ideal of a ring R. Then the map $f: R \to R_{\mu}$ defined by $f(x) = \mu_x^*$ for all $x \in R$, is a surjective homomorphism with kernel μ_t , where $t = \mu(0)$.

The following two theorems are characterizations of rings with chain conditions in terms of finite (or well-ordered) valued fuzzy ideals.

Theorem 2.5 [11]. Let R be a ring with unity. Then R is left Artinian if and only if every fuzzy left ideal of R is finite-valued.

Theorem 2.6 [15]. A ring R is left Notherian if and only if the set of values of every fuzzy left ideal on R is a well-ordered subset of [0,1].

3. Rings with chain conditions

In this section, we characterize rings with chain conditions with the help of fuzzy ideal theory and fuzzy quotient rings.

Lemma 3.1. Let R and R' be rings and $f: R \to R'$ be a ring homomorphism. If f is surjective and μ is a fuzzy left ideal of R, then so is $f(\mu)$. If θ is a fuzzy left ideal of R', then so is $f^{-1}(\theta)$.

Proof. The proof is similar to the proof of Lemma 2.11 of [4]. \Box

Lemma 3.2 [4]. Given a homomorphism $f: R \to R'$ and a fuzzy left ideal μ of R, $f^{-1}(f(\mu)) = \mu + \chi_{\text{Ker}f}$.

Theorem 3.3. Let μ be a fuzzy ideal of R. Then a ring R is left Artinian if and only if R_{μ} is left Artinian and the set $\theta(\mu_t) = \{\theta(x) | x \in \mu_t, \text{ where } t = \mu(0)\}$ is a finite subset of [0,1] for every fuzzy left ideal θ of R.

Proof. Let R be a left Artinian ring. Then for every fuzzy left ideal θ of R, $\theta(\mu_t)$ is a finite subset of [0,1] since θ is finite-valued by Theorem 2.5. Now μ' be any fuzzy left ideal of R_{μ} . Define a map $\theta: R \to [0,1]$ by $\theta(x) = \mu'(\mu_x^*)$ for every $x \in R$. Then θ is a fuzzy left ideal of R, since

$$\theta(x-y) = \mu'(\mu_{x-y}^*) = \mu'(\mu_x^* - \mu_y^*) \ge \min(\mu'(\mu_x^*), \mu'(\mu_y^*)) = \min(\theta(x), \theta(y))$$

and

$$\theta(xy) = \mu'(\mu_{xy}^*) = \mu'(\mu_x^*\mu_y^*) \ge \mu'(\mu_y^*) = \theta(y)$$

for all $x, y \in R$. Since R is left Artinian, θ is finite-valued by Theorem 2.5. And μ' is also finite-valued since the set of values of θ is same to the set of values of μ' , so that R_{μ} is left Artinian.

To prove the converse, let $f: R \to R_{\mu}$ be the surjection defined by $f(x) = \mu_x^*$ and θ a fuzzy left ideal of R. Then by Lemma 3.1, $f^{-1}(f(\theta))$ is a fuzzy left ideal of R and by Theorem 2.4 and Lemma 3.2,

$$f^{-1}(f(\theta))(x) = (\theta + \chi_{\text{Ker}f})(x)$$

$$= \sup \min_{x=a+b} \{\theta(a), \chi_{\mu_t}(b)\}$$

$$= \sup_{x=a+b, b \in \mu_t} \{\theta(a)\}$$

$$= \sup_{b \in \mu_t} \{\theta(x-b)\}$$

for every $x \in R$. Let $x \in R$ and assume that $\theta(x) \neq \theta(b)$ for every $b \in \mu_t$. Since $\theta(\mu_t)$ is finite, let $\theta(\mu_t) = \{\theta(b_i) | 1 \leq i \leq n, b_i \in \mu_t, \theta(b_1) < \theta(b_2) < \dots < \theta(b_n) \}$. Then either $\theta(x) > \theta(b_n)$ or $\theta(x) < \theta(b_n)$. If $\theta(x) > \theta(b_n)$, then $\theta(x-b) \geq \min(\theta(x), \theta(b)) = \theta(b)$ and $\theta(b) = \theta(x-x+b) \geq \min(\theta(x), \theta(x-b)) = \theta(x-b)$ for $\forall b \in \mu_t$. Hence $\theta(x-b) = \theta(b)$ for $\forall b \in \mu_t$ and

$$\sup_{b \in \mu_t} \{\theta(x-b)\} = \sup_{b \in \mu_t - \{0\}} \{\theta(x), \theta(x-b)\}$$

$$= \sup_{b \in \mu_t - \{0\}} \{\theta(x), \theta(b)\}$$

$$= \theta(x),$$

that is,

$$\theta(x) = f^{-1}(f(\theta))(x) = f(\theta)(f(x))$$

for $x \in R$. In the case $\theta(x) < \theta(b_j)$ for some $j, 1 \le j \le n$ and $\theta(x) > \theta(b_{j-1})$, then $\theta(x-b_i) \ge \min(\theta(x), \theta(b_i)) = \theta(x)$ and $\theta(x) = \theta(x-b_i+b_i) \ge \min(\theta(x-b_i), \theta(b_i)) = \theta(x-b_i) \ \forall i \ge j$. So $\theta(x-b_i) = \theta(x) \ \forall i, i \ge j$ and hence

$$\sup_{b \in \mu_t} \{\theta(x - b)\} = \sup_{b \in \mu_t - \{0\}} \{\theta(x), \theta(x - b)\}$$

$$= \sup_{1 \le k \le j - 1} \{\theta(x), \theta(x - b_k)\}$$

$$= \sup_{1 \le k \le j - 1} \{\theta(x), \theta(b_k)\}$$

$$= \theta(x).$$

Thus we can see that $\theta(x) = \theta(b)$ for some $b \in \mu_t$ or $\theta(x) = f^{-1}(f(\theta))(x) = f(\theta)(f(x))$ for a fuzzy left ideal $f(\theta)$ of R_{μ} . Since $\theta(\mu_t)$ is finite and Im $f(\theta)$ is finite by Theorem 2.5, it follows that Im (θ) is also a finite set. Therefore, R is left Artinian. \square

As a corollary of Theorem 3.3 we can prove a well-known result about left Artinian rings [1, Proposition 10.12] using only fuzzy ideal theoretic technique.

Corollary 3.4. Let I be a left ideal of R. Then R is left Artinian if and only if R/I and I are both left Artinian.

Proof. Let R be a left Artinian ring and I a left ideal of R. Then there exists a fuzzy left ideal $\mu = \chi_I$ with $\mu_t = I$, where $t = \mu(0)$. Since $R_{\mu} \simeq R/\mu_t$ is left Artinian by Theorem 3.3, R/I is left Artinian. Now assume that $I = \mu_t$ is not left Artinian. Then there exists a descending chain of left ideals $I = I_0 \supset I_1 \supset I_2 \supset \cdots$. Define a fuzzy subset θ of R by

$$\theta(x) = \begin{cases} 0 & \text{if } x \in R - I_0 \\ \frac{n}{n+1} & \text{if } x \in I_{n-1} - I_n \\ 1 & \text{if } x \in \cap_{n=0}^{\infty} I_n. \end{cases}$$

Then we can see that θ is a fuzzy left ideal of R such that $\theta(\mu_t)$ is not finite. This is a contradiction to Theorem 3.3, so that I is left Artinian. The converse is proved by the similar method to the proof of Theorem 3.3. \square

Similarly to the proof of Theorem 3.3 and by Theorem 2.6, we obtain the following characterization of left Noetherian rings.

Theorem 3.5. A ring R is left Noetherian if and only if R_{μ} is left Noetherian and the set $\theta(\mu_t)$ is a well-ordered subset of [0,1] for every fuzzy left ideal θ of R.

Definition 3.6 [10]. A set B is said to be upper well-ordered if for all nonempty subsets $C \subset B$, sup $C \in C$.

We can see that a set $B \subset [0,1]$ is upper well-ordered if and only if it is without any increasing monotonic limit.

Now we give a new characterization of left Artinian rings which is a generalization of Theorem 2.5.

Theorem 3.7. A ring R is left Artinian if and only if the set of values of any fuzzy left ideal on R is a upper well-ordered subset of [0,1].

Proof. The sufficiency follows from Theorem 2.5. To prove the converse, suppose that R is not left Artinian. Then there exists a strictly descending chain $I_0 \supset I_1 \supset I_2 \supset \cdots$ of left ideals of R. Define a fuzzy subset μ by

$$\mu(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in I_n - I_{n+1}, \ n = 0, 1, 2, \dots \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} I_n, \end{cases}$$

where $I_0 = R$. Then μ is a fuzzy left ideal and $\operatorname{Im}(\mu) = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots, 1\}$ is not upper well-ordered, since it has an increasing monotonic limit 1. This contradicts to the hypothesis. Hence R is left Artinian. \square

The following result is a consequence of Theorem 2.5 and Theorem 3.7. Also, we can prove as follows:

Theorem 3.8. Every fuzzy left ideal of R is finite-valued if and only if $\operatorname{Im}(\mu)$ is upper well-ordered for every fuzzy left ideal μ of R.

Proof. The sufficiency is obvious. Now suppose that Im (μ) is upper well-ordered for every fuzzy left ideal μ of R and there exists a fuzzy left ideal ν of R which is not finite-valued. Then Im (ν) has a strictly decreasing sequence $t_1 > t_2 > t_3 > \cdots$. Then $\nu_{t_1} \subset \nu_{t_2} \subset \nu_{t_3} \subset \cdots$ is a strictly ascending chain of left ideals of R. Let $A_n = \bigcup_{i=n}^{\infty} \nu_{t_i}$. Then $A_1 \supset A_2 \supset A_3 \supset \cdots$ is a strictly descending chain of left ideals of R. Define a fuzzy left ideal θ by

$$\theta(x) = \begin{cases} 0 & x \in R \\ a_n & x \in A_n - A_{n+1} \\ 1 & x \in \cap_{n=1}^{\infty} A_n, \end{cases}$$

where $\{a_n\} \subset [0,1]$ is a strictly increasing sequence converging to 1. Then Im (θ) is not upper well-ordered, a contradiction to the hypothesis. Thus every fuzzy left ideal of R is finite-valued. \square

Next, we characterize rings with chain conditions using only fuzzy quotient rings. In the remaining of this paper, R denotes a commutative ring with identity.

Proposition 3.9. A ring R is Artinian if and only if R_{μ} is Artinian for every fuzzy ideal μ of R.

Proof. Let μ be a fuzzy ideal of R and μ' be any fuzzy ideal of R_{μ} . To show that μ' is finite-valued, define a map $\theta: R \to [0,1]$ by $\theta(x) = \mu'(\mu_x^*)$ for every $x \in R$. Then θ is a fuzzy ideal of R and it is finite-valued by Theorem 2.5. And μ' is also finite-valued since the set of values of θ is same to the set of values of μ' , so that R_{μ} is Artinian.

Conversely, let μ be a fuzzy ideal of a ring R. Then the fuzzy ideal μ' of R_{μ} defined by $\mu'(\mu_x^*) = \mu(x)$ for every $x \in R$ is finite-valued, so that μ is also finite-valued. By Theorem 2.5, R is Artinian. \square

Proposition 3.10. A ring R is Noetherian if and only if R_{μ} is Noetherian for every fuzzy ideal μ of R.

Proof. Suppose that R is Noetherian. Then by the similar method to the proof of Proposition 3.9, it is proved that R_{μ} is Noetherian for every fuzzy ideal μ of R. Conversely, let μ be any fuzzy ideal of R. Then for the fuzzy ideal μ' of R_{μ} defined by $\mu'(\mu_x^*) = \mu(x)$ for $\forall x \in R$, the set of values of μ' is a well-ordered subset of [0,1] by Theorem 2.6. Since the set of values of μ' is same to the set of values of μ , Im (μ) is also well-ordered. Thus R is Noetherian by Theorem 2.6. \square

REFERENCES

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York, 1974. MR 54#5281.
- V. N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Sets and Systems 49 (1992), 205-213 MR 93j:13008.
- 3. R. Kumar, Fuzzy subgroups, fuzzy ideals, and fuzzy cosets: Some properties, Fuzzy Sets and Systems 48 (1992), 267-274. MR 93e:20106.
- 4. T. Kuraoka and N. Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and Systems 47 (1992), 381-386. MR 93f:16009.

- K. H. Lee and J. N. Mordeson, Factorization of fuzzy ideals in Dedekind domains, J. Fuzzy Math. 5(3) (1997), 741-745. CMP 1 472 390(98:01).
- K. H. Lee and J. N. Mordeson, Fractionary fuzzy ideals and fuzzy invertible fractionary fuzzy ideals, J. Fuzzy Math. 5(4) (1997), 875–883. CMP 1 488 033(98:06).
- 7. K. H. Lee and J. N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998), 105-110. MR 99e:13008.
- W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133–139.
 MR 83h:08007.
- 9. W. Liu, Operations on fuzzy ideals, Fuzzy Sets and Systems 8 (1983), 31-41. MR 85g:03077.
- 10. P. Lubczonok, Fuzzy vector spaces, Fuzzy Sets and Systems 38 (1990), 329-343. MR 91j:15025.
- 11. D. S. Malik, Fuzzy ideals of Artinian rings, Fuzzy Sets and Systems 37 (1990), 111-115. MR 91j:16007.
- 12. D. S. Malik and J. N. Mordeson, Fuzzy maximal, radical, and primary ideals of a ring, Inform. Sci. 53 (1991), 237–250. MR 92a:16010.
- J. N. Mordeson, Fuzzy algebraic varieties, Rocky Mountain J. Math. 23 (1993), 1361–1377.
 MR 95c:14002.
- 14. J. N. Mordeson, Fuzzy intersection equations and primary representations, Fuzzy Sets and Systems 83 (1996), 93-98. MR 97e:13010.
- 15. T. K. Mukherjee and M. K. Sen, Rings with chain conditions, Fuzzy Sets and Systems 39 (1991), 117-123. MR 91j:16020.
- 16. C. V. Negoita and D. A. Ralescu, Applications of Fuzzy sets to system analysis, Interdisciplinary Systems Research, Vol. 11, Birkhauser, Basel, 1975. MR 58#9442b.
- 17. P. M. Pu and Y. M. Liu, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37. MR 82e:54009b.
- 18. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. MR 43#6355.
- U. M. Swamy and K. L. N.Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl 134 (1988), 94-103. MR 89f:16062.
- 20. L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965), 338-353. MR 36#2509.

DIVISION OF LIBERAL ARTS, KOREA UNIVERSITY OF TECHNOLOGY AND EDUCATION, CHONAN, CHUNGNAM 330-860, KOREA

E-mail address: khlee@kut.ac.kr