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A VERSION OF A CONVERSE MEASURABILITY FOR
WIENER SPACE IN THE ABSTRACT WIENER SPACE

Bong JiNv Kim

ABSTRACT. Johnson and Skoug [Pacific J. Math. 83 (1979), 157-176)] introduced
the concept of scale-invariant measurability in Wiener space. And they applied their
results in the theory of the Feynman integral. A converse measurability theorem for
Wiener space due to Koehler and Yeh-Wiener space due to Skoug [Proc. Amer. Math.
Soc. 57 (1976), 304-310) is one of the key concept to their discussion.

In this paper, we will extend the results on converse measurability in Wiener space
which Chang and Ryu [Proc. Amer. Math. Soc. 104 (1998), 835-839] obtained to
abstract Wiener space.

1. Introduction and preliminaries

Let H be an infinite dimensional real separable Hilbert space with norm |- | =
V{(-,-). And let P = P(H) be the class of orthogonal projections on H with finite
dimensional range. Then for P € P,

Cp :={P"'B: B is a Borel set in the range of P}

is a o-field. And the sets in Cp are called cylinder sets with base P.
Let C = [JCp. Then C is a field but is not a o-field. Let u be the cylinder set
measure on H defined by

= () [ (1)

where E = P~1(F), F is a Borel set in the image of an n-dimensional projection P
in H and dz is Lebesgue measure in PH.
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Definition 1.1. A norm || - || on H is said to be measurable with respect to u if
for every € > 0, there exists P, € P such that

p({z € H : ||Pz|| > €}) < €

for alPisa orthogonal to P., P € P.

Let P, P, € P with dim P.H = n and dim PH = k and P > P.(means that
P(H) D P.(H)), then P — P, is orthogonal to P. and P — P. € P. Further
dim(P — P.)H =k — n, and

p({z € H : (P — Pe)(z)| > €})
= p({z € H: |(P - P)(z)]* > €*})
=1-p({z e H:|(P-P)=)*<e}) =1 as k— oo

Thus the Definition 1.1 shows that the Hilbertian norm |- | = 1/{-,-) is not a
measurable norm.

A measurable norm is necessarily weaker than the given Hilbertian norm | - |.
Indeed, if || - || is a measurable norm, then there exists a constant ¢ such that
l|h|| < c|h| for all h € H and H is not complete with respect to || - || (cf. [8]).

Let B denote the Banach space which is the || ||-completion of H. Let y: H — B
denote the natural injection (so that y(h) = h ). Then ~ is continuous and y(H) is
dense in B. The adjoint operator v* is one-to-one and maps B* continuously onto
a dense subset of H*. Since H is a Hilbert space, H* can be identified with H.
Thus we have a triple, B* C H* = H C B and (z,y) = (z,y) for all z in H and y
in B*, where (z,y) denote the action of an element y in B* on an element z in B.

Let By denote the set of the form

{.’13 €B: ((m,yl),(m,yz),' I (ﬂ?,yk)) € E}

for k > 1, y; € B*, E € B(R*), the Borel o-field of R¥.

Using this we can see that v~ 1(By) C C. By a well-known result of Gross [5],
po~~! has a unique countably additive extension v to the Borel o-field B(B) of B.
The triple (H, B,v) is called an abstract Wiener space.

Since v*(B*) is dense in H* = H, we can choose a complete orthonormal system
{ej : 7 > 1} of H such that {e; : j > 1} C v*(B~).
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Let {y; : § > 1} C B* be such that e; = y*(y;). For each hin H and z in B, let
L) (@) = { > o1 (hyej) (z,e5)  if the series converges,

By the choice of {y; : j > 1}, {y;} is a sequence of independent identically dis-

(1.1)

0 otherwise.

tributed random variables on (B, B(B),v) with mean zero and unit variance. Thus
the series in (1.1) converges a.e. x.

Furthermore L(h) is a Borel measurable on B and if both & and z are in H,
Parseval’s identity gives L(h)(z) = (h,z) (cf. [9]). We have the following facts from
Kallianpur and Bromley [7].

Lemma 1.2. Let (H, B,v) be an abstract Wiener space. Then

(a) for each h(# 0) € H, L(h) is Gaussian with mean zero and variance |h|?;
and

(b) if {h1,he, -, hn} is an orthonormal set in H, then the random variables
L(h;) are independent.

2. Converse measurability for (H, B,v)

A probability measure P on a o-field S containing the Borel sets in a topological
space S is called tight if for every ¢ > 0 and for any E € S there exists a compact
set K such that P(E\K) < e. It is well-known that any probability measure on the
Borel class of a complete separable metric space is tight (cf. [9]).

Let P be a tight measure on B(S) and m be a measure on B(T') where S and
T are topological spaces, respectively. Let (S, B(S), P) and (T, m, m) be the
completion of (S,B(S), P) and (T, B(T), m), respectively. Then P is also a tight

measure on B(S) (cf. [2]). And we have the following lemma which is an extension
of the result in Chang and Ryu [2]. '

Lemma 2.1. Let f: S — T be a Borel measurable function and let
U={ECT: f*(E)is P-measurable} (2.1)

Then (T,U, 1) is a complete tight measure space where y := Po f~! is a set function
onl.

Proof. It is easy to see that U is a o-field which contains the Borel sets in T' and
(T,U, 1) is a complete measure space.
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To show that p is tight on U, let E € U, and € > 0 be given. Since E € U, there
exists a Borel subset E of f~1(E) such that P(E) = P(f~1(E)). And since f is
a Borel measurable, it follows from a generalization of Lusin’s theorem [3], there
exists a compact subset K, of E such that P(E) < P(K.) + ¢ and f is continuous
on K., where E is a Borel subset of f~1(E). Thus f(K.) is compact, f(K.) C E
and

wE\f(Ke)) = P(f~H(E\f(K.) < P(fTHE)\Ko)

= P(f"Y(E)) - P(K.)=P(E) - P(K.) < e.
Therefore p is a tight measure on 4. O

By the similar arguments as in Chang and Ryu [2], we have the following lemma.

Lemma 2.2. Let U be defined as in (2.1), then U = B(T) under the following
assumption: N is m-null set if and only if N is p-null set.

We can now prove a version of converse measurability theorem for Wiener space
(cf. [2]) in the setting of abstract Wiener space.

Theorem 2.3. Let (H, B,v) be an abstract Wiener space, and let {hy,ha, -, hy}
be a linearly independent subset of H. Let E be any subset of R™ and let L be
defined as in (1.1). Then E is Lebesgue measurable in R™ if and only if f~1(E) is

abstract Wiener measurable, where
f(@) = (L(h1)(z), L(h2)(2), - - -, L(hn)())- (2.2)

Proof. Let
U={ECR": f7Y(E) is abstract Wiener measurable}.

To show that & C L(R™), the class of Lebesgue measurable sets, by Lemma 2.2,
it suffice to show that if N is a p-null set then N is an [-null set, where [ is the
Lebesgue measure on R™ and p is the measure defined by p = v o f~1.

Assume that N is g-null set and is not [-null set. If N is [-measurable, then there
exists a Borel set G C N such that [{(G) = I(N) > 0. By above Lemma 1.2, f is an
n-dimensional Gaussian random vector on B with mean zero and covariance (v;;),

where v;; = (h;, hj) for i,j =1,2,--,n. Thus we have

W(G) = vo fH(G) = v(fH(G)) > 0.
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Since G C N, we have pu(N) > u(G) > 0, which is a contradiction.

And if N is not I-measurable, that is N ¢ L(R") then {(G) > 0 for every Borel
set G D N. Since by Lemma 2.1, u = v o f~! is tight, there exists a compact set
K, C N¢ such that p(N°\K,) < = for each n.

Let K = U2, K,. Then K° is a Borel set and N C K¢,

WE) = 1= p(K) = p(N°) — w(K) < p(N\K) < p(N\K,) <

for each n. Hence u(K°) = 0. Since u(G) > 0 for any Borel set G D N, which is a
contradiction. Thus every p-null set is also an I-null set.

Conversely, suppose that F is a Lebesgue measurable set in R™. Then there exist
a Borel set G and a subset N; of a Borel null set N in R™ such that E = G U Nj.
Since f is Borel measurable, it follows that f~1(G) and f~!(V) are in B(B). Since
w(N) = vof~1(N) =0, F~}(N) isin B(B) and hence f~1(E) = f~1(G)Uf~(N1)
is in B(B) . O

Remark. Let

H={z:[a,b] > RY: z(t) = (xl(t),---,J;N(t));/b(Dzj(s))st <00, 1<j <N}

where z7(t) = f: Dz’(s)ds,1 < j < N,and D = £. Then H is a Hilbert space
with inner product

N b
(2,8) =3 / Da? (5) D (s)ds
j=17a

and the norm |||z|| = /{(z, z).

Let ||z|}1 = supastsb(zy___l(:cj(t)y)%. Then ' = Co([a,b],RY) := B, the
separable Banach space of continuous functions from [a,b] into RY which is vanish
at a (cf. [8]). And it is called the N-dimensional Wiener space.

And it can be shown that ||-||; is a measurable norm (cf. {8]). Thusify: H - B
denote the natural injection, then (H, B,v) is an abstract Wiener space, where v
is the corresponding abstract Wiener measure. And it is well-known that the dual
B* of B is given by

B*={0=(#",---,0") : ¢’ is a finite signed measure on [a,b],1 < j < N}
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and the action (z,0) is given by
N b '
(32,0) = Z/ xj(u)ng(u), r= (a"ly v 'a$N)'
j=170

Thus we have v = m,,, where m,, is the standard Wiener measure on (B, B(B)).
And if we let L(h)(z) =3 5o, < h,0; > (z,6;). Then we have

L(h)(z) = /b Dh-dz ae.zx (2.3)

Let a =ty < t; < --- < t, = b be a subdivision of [a,b]. Let E be any subset of
R™ and define J : Cy([a, b],R) — R™ by

J(z) = (2(t1), 2(t2), - -, 2(tn))- (2.4)

Then J is continuous on Cy([a, b], R) with respect to the uniform topology.

Chang and Ryu [2] established Theorem 2.4 below, which is called an converse
measurability theorem for Wiener space. Now, we prove Theorem 2.4 as a corollary
of Theorem 2.3.

Theorem 2.4 (Koehler). Let o :a =1ty <t; < --- < t, = b be a subdivision of
[a,b]. Let E be any subset of R™ and J be defined as in (2.4). Then E is Lebesgue
measurable if and only if J~1(E) is Wiener measurable.

Proof. For N =1 in the above remark, (H, Co([a,b],R), m,,) is an abstract Wiener
space. Let hf(s) = f: X(a,¢;](w)du for j = 1,2,---,n. Then {h?} is clearly a linearly
independent subset in H. From (2.2), (2.3) and (2.4) we have,

J(:L‘) = (m(tl)) :L‘(tz), v ')x(tn))
= (L(h])(z), L(h3)(x), - -, L(h7)(x)) = f(z).

Hence by Theorem 2.3, E is Lebesgue measurable if and only if J~1(E) is Wiener

measurable. [
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