J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 7(2000), no. 1, 41-47

A VERSION OF A CONVERSE MEASURABILITY FOR WIENER SPACE IN THE ABSTRACT WIENER SPACE

Bong Jin Kim

ABSTRACT. Johnson and Skoug [Pacific J. Math. 83 (1979), 157-176] introduced the concept of scale-invariant measurability in Wiener space. And they applied their results in the theory of the Feynman integral. A converse measurability theorem for Wiener space due to Köehler and Yeh-Wiener space due to Skoug [Proc. Amer. Math. Soc. 57 (1976), 304-310] is one of the key concept to their discussion.

In this paper, we will extend the results on converse measurability in Wiener space which Chang and Ryu [Proc. Amer. Math. Soc. 104 (1998), 835–839] obtained to abstract Wiener space.

1. Introduction and preliminaries

Let H be an infinite dimensional real separable Hilbert space with norm $|\cdot| = \sqrt{\langle \cdot, \cdot \rangle}$. And let $\mathcal{P} = \mathcal{P}(H)$ be the class of orthogonal projections on H with finite dimensional range. Then for $P \in \mathcal{P}$,

$$C_P := \{P^{-1}B : B \text{ is a Borel set in the range of P}\}$$

is a σ -field. And the sets in \mathcal{C}_P are called cylinder sets with base P.

Let $C = \bigcup C_P$. Then C is a field but is not a σ -field. Let μ be the cylinder set measure on H defined by

$$\mu(E) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \int_F \exp\left(-\frac{|x|^2}{2}\right) dx$$

where $E = P^{-1}(F)$, F is a Borel set in the image of an n-dimensional projection P in H and dx is Lebesgue measure in PH.

Received by the editors August 10, 1999.

²⁰⁰⁰ Mathematics Subject Classification. 28C20.

Key words and phrases. cylinder set, measurable norm, converse measurability, tight measure, abstract Wiener spacePettis integrability, separable-like function.

Definition 1.1. A norm $||\cdot||$ on H is said to be measurable with respect to μ if for every $\epsilon > 0$, there exists $P_{\epsilon} \in \mathcal{P}$ such that

$$\mu(\{x \in H : ||Px|| > \epsilon\}) < \epsilon$$

for all P is a orthogonal to P_{ϵ} , $P \in \mathcal{P}$.

Let $P, P_{\epsilon} \in \mathcal{P}$ with $\dim P_{\epsilon}H = n$ and $\dim PH = k$ and $P > P_{\epsilon}$ (means that $P(H) \supset P_{\epsilon}(H)$), then $P - P_{\epsilon}$ is orthogonal to P_{ϵ} and $P - P_{\epsilon} \in \mathcal{P}$. Further $\dim(P - P_{\epsilon})H = k - n$, and

$$\mu(\{x \in H : |(P - P_{\epsilon})(x)| > \epsilon\})$$

$$= \mu(\{x \in H : |(P - P_{\epsilon})(x)|^{2} > \epsilon^{2}\})$$

$$= 1 - \mu(\{x \in H : |(P - P_{\epsilon})(x)|^{2} < \epsilon^{2}\}) \to 1 \text{ as } k \to \infty.$$

Thus the Definition 1.1 shows that the Hilbertian norm $|\cdot| = \sqrt{\langle \cdot, \cdot \rangle}$ is not a measurable norm.

A measurable norm is necessarily weaker than the given Hilbertian norm $|\cdot|$. Indeed, if $||\cdot||$ is a measurable norm, then there exists a constant c such that $||h|| \le c|h|$ for all $h \in H$ and H is not complete with respect to $||\cdot||$ (cf. [8]).

Let B denote the Banach space which is the $||\cdot||$ -completion of H. Let $\gamma: H \to B$ denote the natural injection (so that $\gamma(h) = h$). Then γ is continuous and $\gamma(H)$ is dense in B. The adjoint operator γ^* is one-to-one and maps B^* continuously onto a dense subset of H^* . Since H is a Hilbert space, H^* can be identified with H. Thus we have a triple, $B^* \subset H^* = H \subset B$ and $\langle x, y \rangle = (x, y)$ for all x in H and y in B^* , where (x, y) denote the action of an element y in B^* on an element x in B.

Let \mathcal{B}_0 denote the set of the form

$$\{x \in B : ((x, y_1), (x, y_2), \dots, (x, y_k)) \in E\}$$

for $k \geq 1$, $y_i \in B^*$, $E \in \mathcal{B}(\mathbb{R}^k)$, the Borel σ -field of \mathbb{R}^k .

Using this we can see that $\gamma^{-1}(\mathcal{B}_0) \subseteq \mathcal{C}$. By a well-known result of Gross [5], $\mu \circ \gamma^{-1}$ has a unique countably additive extension ν to the Borel σ -field $\mathcal{B}(B)$ of B. The triple (H, B, ν) is called an abstract Wiener space.

Since $\gamma^*(B^*)$ is dense in $H^* = H$, we can choose a complete orthonormal system $\{e_j : j \geq 1\}$ of H such that $\{e_j : j \geq 1\} \subseteq \gamma^*(B^*)$.

Let $\{y_j : j \geq 1\} \subseteq B^*$ be such that $e_j = \gamma^*(y_j)$. For each h in H and x in B, let

$$L(h)(x) = \begin{cases} \sum_{j=1}^{\infty} \langle h, e_j \rangle (x, e_j) & \text{if the series converges,} \\ 0 & \text{otherwise.} \end{cases}$$
 (1.1)

By the choice of $\{y_j : j \geq 1\}$, $\{y_j\}$ is a sequence of independent identically distributed random variables on $(B, \mathcal{B}(B), \nu)$ with mean zero and unit variance. Thus the series in (1.1) converges a.e. x.

Furthermore L(h) is a Borel measurable on B and if both h and x are in H, Parseval's identity gives $L(h)(x) = \langle h, x \rangle$ (cf. [9]). We have the following facts from Kallianpur and Bromley [7].

Lemma 1.2. Let (H, B, ν) be an abstract Wiener space. Then

- (a) for each $h(\neq 0) \in H$, L(h) is Gaussian with mean zero and variance $|h|^2$;
- (b) if $\{h_1, h_2, \dots, h_n\}$ is an orthonormal set in H, then the random variables $L(h_j)$ are independent.

2. Converse measurability for (H, B, ν)

A probability measure P on a σ -field S containing the Borel sets in a topological space S is called *tight* if for every $\epsilon > 0$ and for any $E \in S$ there exists a compact set K such that $P(E \setminus K) < \epsilon$. It is well-known that any probability measure on the Borel class of a complete separable metric space is tight (cf. [9]).

Let P be a tight measure on $\mathcal{B}(S)$ and m be a measure on $\mathcal{B}(T)$ where S and T are topological spaces, respectively. Let $(S, \overline{\mathcal{B}(S)}, \overline{P})$ and $(T, \overline{\mathcal{B}(T)}, \overline{m})$ be the completion of $(S, \mathcal{B}(S), P)$ and $(T, \mathcal{B}(T), m)$, respectively. Then \overline{P} is also a tight measure on $\overline{\mathcal{B}(S)}$ (cf. [2]). And we have the following lemma which is an extension of the result in Chang and Ryu [2].

Lemma 2.1. Let $f: S \to T$ be a Borel measurable function and let

$$\mathcal{U} = \{ E \subset T : f^{-1}(E) \text{ is } \overline{P}\text{-measurable} \}$$
 (2.1)

Then (T, \mathcal{U}, μ) is a complete tight measure space where $\mu := \overline{P} \circ f^{-1}$ is a set function on \mathcal{U} .

Proof. It is easy to see that \mathcal{U} is a σ -field which contains the Borel sets in T and (T,\mathcal{U},μ) is a complete measure space.

To show that μ is tight on \mathcal{U} , let $E \in \mathcal{U}$, and $\epsilon > 0$ be given. Since $E \in \mathcal{U}$, there exists a Borel subset \tilde{E} of $f^{-1}(E)$ such that $\overline{P}(\tilde{E}) = \overline{P}(f^{-1}(E))$. And since f is a Borel measurable, it follows from a generalization of Lusin's theorem [3], there exists a compact subset K_{ϵ} of \tilde{E} such that $\overline{P}(\tilde{E}) < \overline{P}(K_{\epsilon}) + \epsilon$ and f is continuous on K_{ϵ} , where \tilde{E} is a Borel subset of $f^{-1}(E)$. Thus $f(K_{\epsilon})$ is compact, $f(K_{\epsilon}) \subset E$ and

$$\mu(E \backslash f(K_{\epsilon})) = \overline{P}(f^{-1}(E \backslash f(K_{\epsilon}))) \leq \overline{P}(f^{-1}(E) \backslash K_{\epsilon})$$
$$= \overline{P}(f^{-1}(E)) - \overline{P}(K_{\epsilon}) = \overline{P}(\tilde{E}) - \overline{P}(K_{\epsilon}) < \epsilon.$$

Therefore μ is a tight measure on \mathcal{U} . \square

By the similar arguments as in Chang and Ryu [2], we have the following lemma.

Lemma 2.2. Let \mathcal{U} be defined as in (2.1), then $\mathcal{U} = \overline{\mathcal{B}(T)}$ under the following assumption: N is \bar{m} -null set if and only if N is μ -null set.

We can now prove a version of converse measurability theorem for Wiener space (cf. [2]) in the setting of abstract Wiener space.

Theorem 2.3. Let (H, B, ν) be an abstract Wiener space, and let $\{h_1, h_2, \dots, h_n\}$ be a linearly independent subset of H. Let E be any subset of \mathbb{R}^n and let L be defined as in (1.1). Then E is Lebesgue measurable in \mathbb{R}^n if and only if $f^{-1}(E)$ is abstract Wiener measurable, where

$$f(x) = (L(h_1)(x), L(h_2)(x), \dots, L(h_n)(x)). \tag{2.2}$$

Proof. Let

$$\mathcal{U} = \{ E \subset \mathbb{R}^n : f^{-1}(E) \text{ is abstract Wiener measurable} \}.$$

To show that $\mathcal{U} \subset \mathcal{L}(\mathbb{R}^n)$, the class of Lebesgue measurable sets, by Lemma 2.2, it suffice to show that if N is a μ -null set then N is an l-null set, where l is the Lebesgue measure on \mathbb{R}^n and μ is the measure defined by $\mu = \nu \circ f^{-1}$.

Assume that N is μ -null set and is not l-null set. If N is l-measurable, then there exists a Borel set $G \subset N$ such that l(G) = l(N) > 0. By above Lemma 1.2, f is an n-dimensional Gaussian random vector on B with mean zero and covariance (v_{ij}) , where $v_{ij} = \langle h_i, h_j \rangle$ for $i, j = 1, 2, \dots, n$. Thus we have

$$\mu(G) = \nu \circ f^{-1}(G) = \nu(f^{-1}(G)) > 0.$$

Since $G \subset N$, we have $\mu(N) \geqslant \mu(G) > 0$, which is a contradiction.

And if N is not l-measurable, that is $N \notin \mathcal{L}(\mathbb{R}^n)$ then l(G) > 0 for every Borel set $G \supset N$. Since by Lemma 2.1, $\mu = \nu \circ f^{-1}$ is tight, there exists a compact set $K_n \subset N^c$ such that $\mu(N^c \setminus K_n) < \frac{1}{n}$ for each n.

Let $K = \bigcup_{n=1}^{\infty} K_n$. Then K^c is a Borel set and $N \subset K^c$,

$$\mu(K^c) = 1 - \mu(K) = \mu(N^c) - \mu(K) \le \mu(N^c \setminus K) \le \mu(N^c \setminus K_n) < \frac{1}{n}$$

for each n. Hence $\mu(K^c) = 0$. Since $\mu(G) > 0$ for any Borel set $G \supset N$, which is a contradiction. Thus every μ -null set is also an l-null set.

Conversely, suppose that E is a Lebesgue measurable set in \mathbb{R}^n . Then there exist a Borel set G and a subset N_1 of a Borel null set N in \mathbb{R}^n such that $E = G \cup N_1$. Since f is Borel measurable, it follows that $f^{-1}(G)$ and $f^{-1}(N)$ are in $\mathcal{B}(B)$. Since $\mu(N) = \nu \circ f^{-1}(N) = 0$, $F^{-1}(N_1)$ is in $\overline{\mathcal{B}(B)}^{\nu}$ and hence $f^{-1}(E) = f^{-1}(G) \cup f^{-1}(N_1)$ is in $\overline{\mathcal{B}(B)}^{\nu}$. \square

Remark. Let

$$H = \{x: [a,b] \to \mathbb{R}^N: \ x(t) = (x^1(t), \cdots, x^N(t)); \int_a^b (Dx^j(s))^2 ds < \infty, \ 1 \le j \le N \}$$

where $x^{j}(t) = \int_{a}^{t} Dx^{j}(s)ds$, $1 \leq j \leq N$, and $D = \frac{d}{ds}$. Then H is a Hilbert space with inner product

$$\langle x, \hat{x} \rangle := \sum_{j=1}^{N} \int_{a}^{b} Dx^{j}(s) D\hat{x}^{j}(s) ds$$

and the norm $|||x||| = \sqrt{\langle x, x \rangle}$.

Let $||x||_1 := \sup_{a \le t \le b} (\sum_{j=1}^N (x^j(t))^2)^{\frac{1}{2}}$. Then $\overline{H}^{||\cdot||_1} = C_0([a,b],\mathbb{R}^N) := B$, the separable Banach space of continuous functions from [a,b] into \mathbb{R}^N which is vanish at a (cf. [8]). And it is called the N-dimensional Wiener space.

And it can be shown that $||\cdot||_1$ is a measurable norm (cf. [8]). Thus if $\gamma: H \to B$ denote the natural injection, then (H, B, ν) is an abstract Wiener space, where ν is the corresponding abstract Wiener measure. And it is well-known that the dual B^* of B is given by

$$B^* = \{\theta = (\theta^1, \dots, \theta^N) : \theta^j \text{ is a finite signed measure on } [a, b], 1 \le j \le N\}$$

and the action (x, θ) is given by

$$(x,\theta) = \sum_{j=1}^N \int_a^b x^j(u)d\theta^j(u), \quad x = (x^1, \dots, x^N).$$

Thus we have $\nu = m_w$, where m_w is the standard Wiener measure on $(B, \mathcal{B}(B))$. And if we let $L(h)(x) = \sum_{j=1}^{\infty} \langle h, \theta_j \rangle (x, \theta_j)$. Then we have

$$L(h)(x) = \int_{a}^{b} Dh \cdot dx \quad \text{a.e. } x$$
 (2.3)

Let $a = t_0 < t_1 < \dots < t_n = b$ be a subdivision of [a, b]. Let E be any subset of \mathbb{R}^n and define $J: C_0([a, b], \mathbb{R}) \to \mathbb{R}^n$ by

$$J(x) = (x(t_1), x(t_2), \dots, x(t_n)). \tag{2.4}$$

Then J is continuous on $C_0([a,b],\mathbb{R})$ with respect to the uniform topology.

Chang and Ryu [2] established Theorem 2.4 below, which is called an *converse* measurability theorem for Wiener space. Now, we prove Theorem 2.4 as a corollary of Theorem 2.3.

Theorem 2.4 (Köehler). Let $\sigma: a = t_0 < t_1 < \cdots < t_n = b$ be a subdivision of [a,b]. Let E be any subset of \mathbb{R}^n and J be defined as in (2.4). Then E is Lebesgue measurable if and only if $J^{-1}(E)$ is Wiener measurable.

Proof. For N=1 in the above remark, $(H, C_0([a, b], \mathbb{R}), m_w)$ is an abstract Wiener space. Let $h_j^{\sigma}(s) = \int_a^s \chi_{[a,t_j]}(u)du$ for $j=1,2,\dots,n$. Then $\{h_j^{\sigma}\}$ is clearly a linearly independent subset in H. From (2.2),(2.3) and (2.4) we have,

$$J(x) = (x(t_1), x(t_2), \dots, x(t_n))$$

= $(L(h_1^{\sigma})(x), L(h_2^{\sigma})(x), \dots, L(h_n^{\sigma})(x)) = f(x).$

Hence by Theorem 2.3, E is Lebesgue measurable if and only if $J^{-1}(E)$ is Wiener measurable. \square

REFERENCES

- K. S. Chang, Converse measurability theorems for Yeh-Wiener space, Pacific J. Math. 97 (1981), 59-63. MR 83g:60067.
- 2. K. S. Chang and K. S. Ryu, A generalized converse measurability theorem, Proc. Amer. Math. Soc. 104 (1988), 835-839. MR 89e:28021.
- 3. D. L. Cohn, Measure Theory, Birkhäuser, Boston, Mass., 1980. MR 81k:28001.
- 4. G. B. Folland, *Real analysis*, Modern techniques and their applications. Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1984. MR 86k:28001.
- L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, Calif., 1967, pp. 31-42. MR 35#3027.
- G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176. MR 81b:28016.
- G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic analysis and applications (M. Pinsky, ed.), Marcel-Dekker, New York, 1984, pp. 217-267. MR 86m:60007.
- 8. H. H. Kuo, Gaussian measures in Banach space, Lecture Notes in Mathematics, No.463, Springer, Berlin, 1975. MR 57#1628.
- K. R. Parthasarathy, Probability measures on metric space, Academic Press, New York, 1967.
 MR 37#2271.
- 10. D. L. Skoug, Converses to measurability theorems for Yeh-Wiener space, Proc. Amer. Math. Soc. 57 (1976), 304-310. MR 54#10549.
- 11. I. Yoo, The analytic Feynman integral over paths in abstract Wiener space, Commun. Korean Math. Soc. 10 (1995), 93-107. MR 98g:28015.

DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY, POCHEON, GYEONGGI-DO 487-711, KOREA

E-mail address: bjkim@road.daejin.ac.kr