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ON FARTHEST POINTS IN METRIC SPACES

T. D. NARANG

ABSTRACT. For a bounded subset G of a metric space (X,d) and =z € X, let fg
be the real-valued function on X defined by fg(z) = sup{d(z,g) : ¢ € G}, and
F(G,z) = {2 € X : sup,cgd(g,2) = supyeg d(g,z) + d(z,2)}. In this paper we
discuss some properties of the map fc and of the set F(G,z) in convex metric
spaces. A sufficient condition for an element of a convex metric space X to lie in
F(G, z) is also given in this paper.

1. INTRODUCTION

Let G be a bounded set in a metric spaces (X,d) and z € X. The deviation of
G from z is the number é(z,G) = sup{d(z,g) : ¢ € G} and any go € G for which
the supremum is attained, i. e., such that d(z, go) = sup{d(z,g) : g € G} is called a
farthest point to z in G. We shall denote by Fg(z) the set of all farthest points to
zin G, i. e.,
Fo(z)={go € G:d(z,g0) = 6(z,G)}. (1)
The map Fg : X — 2C (the collection of all subsets of G) defined by (1), is
called the farthest point map.
The set G is said to be
(a) remotal if for each z € X, the set F(z) is non-empty,
(b) uniquely remotal if for each z € X, the set Fg(z) consists of exactly one
element, and
(c) nearly compact (cf. Ahuja, Narang & Trehan [1]) or “-compact (cf. Blatter
[2]) or sup compact (cf. Govindarajulu & Pai [5]) or M-compact (cf. Panda &
Kapoor [10]) if for each z € X, the sequence (gn) in G satisfying d(z, g,) —

F(z) contains a subsequence converging to an element of G.
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Obviously, every compact set in a metric space is nearly compact but a nearly
compact set need not be compact, e. g., the set G consisting of the open unit square
together with its corners in the 2-dimensional Euclidean space R? is nearly ccmpact
but not compact (see Panda & Kapoor [10]). The set G is not even closed.

Since nearly compact sets in a metric space are remotal (see Ahuja, Narang &
Trehan [1]), this example shows that a remotal set need not be closed. It is easy to
see that if G is a closed set in a metric space (X, d) then the set Fg(z) is closed. The
following example shows that if G is a remotal set then Fg(z) need not be closed.

Definition. Let X = {0} U{1/n:n € N} U {zo}, where zo ¢ {0} U{1/n:n € N}.
Define a matric d on X by
(i) d(1/n,0) =d(0,1/n) =1/n,
(i) d(1/n,1/m) =|1/n~1/m|,
(iii) d(=zo,0) = d(0,z0) =1, and
(iv) d(z,z) =0 for all z € X.
This d defines a metric on X. Take G = {1/n: n € N}U{zo}. Then G is remotal
but Fg(zo) = {1/n: n € N} is not closed.

2. MAIN RESULTS

Concerning nearly compact sets, we have

Proposition 1. The closure of a nearly compact set in a metric space is nearly

compact.

For normed linear spaces this result is proved in Panda & Kapoor [10] and it can
be easily seen that the proof given in Panda & Kapoor [10] works in metric spaces
too.

Before proving our next result we recall the following.

Definition. Let (X, d) be a metric space and I = [0, 1] be the closed unit interval.
A continuous mapping W : X x X x I — X is said to be a convez structure on X
ifforall z,y € X, A e I,

d(u, W(z,y,\)) < Md(u,z) + (1 — A)d(u,y) forallu € X.

The metric space (X, d) together with a convex structure is called a convex metric
space (cf. Takahashi [11]).
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For a bounded subset G of a metric space (X,d), consider a function fg on X
defined by fg(z) = 6(z,G) := sup{d(z,g9) : g € G}.
In a convex metric spaces, we have the following proposition.

Proposition 2. If G is a bounded subset of a convex metric space (X, d) then fg is a
convez 1-Lipschitz function, i. e., a uniformly Lipschitz continuous convez function
with Lipschitz constant 1.

Proof. Let z,y € X and 0 < A < 1. Consider

fG[W("B)ya A)] = sup d(W(.’E,y, )‘)ag)
[13e

< supd(z,g) + (1 - A)supd(y,g) = Afe(z) + (1 — A) fa(y)
geG g€eG

showing thereby that fg is convex.
Now we prove the Lipshitzian property of fo. For any element z in G, consider

d(z,z) < d(z,y) + d(y, 2)

and so
supd(z, z) < d(z,y) + supd(y, 2),
z2€G z€G
i €., fG(m) < d(:z;,y) + fG(y)'
This implies |fg(z) — fe(y)| < d(z,y) for all z,y € X. O

Remark 1. For normed linear spaces this result is given in Miyajima & Wada [8].

Remark 2. If G is a non-empty closed subset of a Banach space X, then a nearest
point in G is defined similarly as in the case of a farthest points and the distance

function dg is defined by
dg(z) = inf{d(z,2) : z € G}.

It was shown in Borwein & Fitzpatrick [3] that if G is a non-empty closed subset
of a Banach space X such that X/G is convex then dg is concave on X/G.

Does a similar result hold in metric spaces or in convex metric spaces? The
following remarks were made in Miyajima & Wada [8].

Remark 3. Suppose G is a non-empty bounded closed subset of a Banach space X.
If z € G is a farthest point from an z € X, then z is also a nearest point in G.
Indeed z is a nearest point in G from any point which is on the line connecting z
and z and lies on the opposite side of z to x. Therefore, if there exist no nearest
point in G, there exist also no farthest point in G.
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Do we have a similar situation in metric spaces? For the results on farthest points
in metric spaces we refer Narang [9].

Remark 4. Consider the problem of choosing an element of X which best represents
the set G. If x is any particular element of X chosen to represent the set G, the error
incurred will be sup{d(z,y) : y € G}. An zy € X will best represent the set G when
this error is minimum. Such elements zg are called centres or Chebyshev centres of
the set G. Since the function fg(z) is convex and (Lipschitz) continuous on X, the
set E(G) (the collection of Chebyshev centres of G) should be, as in normed linear
spaces (see Holmes [6, p.‘ 179]), a bounded closed convex subset of the convex metric
space X.

Now we consider a set somewhat similar to the set Fg(z) and study some prop-
erties of this set. Let G be a non-empty bounded subset of a metric space (X,d)
and zg € X. For each z € X we know that

sup d(g, z) < sup d(g, zo) + d(zo, 2).
g€eq geG

Let us define the set F(G, zo) as

F(G,xo) = {z € X :supd(g,2) = sup d(g, zo) + d(zo, 2) }-
geG geG

Then F(G, ) is a non-empty (since zg € F(G, zp)) closed subset of X. In normed
linear spaces this set was considered in Elumalai & Ravi [4].
The following results give some simple properties of the set F(G,zo) in metric

spaces.

Proposition 3. Let g, € G be such that supyc d(g, 2) = lim, 00 d(gn, 2) for each
z € F(G,z0)\{z0}- Then supgec d(g, zo) = limp_00 d(gn, zo).

Corollary. For each z € F(G,z0)\{z0}, we have Fg(z) C Fg(zo).
Proposition 4. Let z € F(G,z) and y € F(G, 2) then d(zo,y) = d(zo, 2) +d(z,y).
Proposition 5. Let z € F(G,zg) then F(G,z) C F(G, zo).
Proposition 6. Let G C Gi, and zp € X be such that
sup d(g,zo) = sup d(g, zo)

geCG geG)
then F(G,:Bo) - F(Gl,xo).



ON FARTHEST POINTS IN METRIC SPACES 5

All these results have been proved in Elumalai & Ravi [4] when the underlying
space is a normed linear space and one can easily see that the proofs given in Elumalai
& Ravi [4] work in metric spaces too.

If the metric space X is a convex metric space, we have the following proposition.

Proposition 7. Let (X,d) be a convex metric space and z € F(G, zo) then
W(z,z0,A) C F(G,zg) for every scalar A € [0,1].
Proof. Let g € G. Then for every scalar A € [0,1],
d(z,9) < d(g, W(z, 0, A)) + d(W (2,20, A), 2)
implies

sup d(ga W(Z, Zg, A))

9€G

2 sup d(z’ g) - d(W(Z, Zo, )‘)7 Z)
geG

= sup d(g,CL'()) + d(ﬂUO, Z) - d(W(Z,l’o, )‘)72) as z € F(G,.’Eo)
geG

> supd(g,:co) + d(éL‘(),Z) - (1 - )‘)d(mO)z)
geG

= sup d(g, zo) + Ad(zo, 2)
geqG

> supd(g, Zo) + d(zo, W (2, Zo, A)).
9€G

But supgeq d(g, W (2,20, A)) < supyeq d(g, 2o) + d(zo, W(2, 20, A)). So,

sup d(g, W(z, zg, A)) = supd(g, o) + d(zo, W(z, 2o, A)).

9€G geG
Therefore W(z,z9,\) C F(G, zg) for every scalar A € [0, 1]. a
Remark 5. For normed linear spaces this result is proved in Elumalai & Ravi [4].

Before proving our next result, we describe the space X, g’e discussed in Johnson [7).
Let (X, d) be a metric space and yp be a fixed point of X. The set

Xg’é={f:X—>R: iiiW<w’ f(y0)=0}

with the usual operations of addition and multiplication by real scalars, normed by

I1£lx = Siﬁ; ___If(z)(;;)(y)l’ fexy
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is a Banach space (even a conjugate Banach space (cf. Johnson [7])).
The space Xf plays, with respect to X, in many ways, the same role as the
conjugate space E* of a normed linear space E, with respect to F.

Proposition 8. Let G be a bounded subset of a metric space (X,d) and xg,29 €
X, xo # zo with Fg(29) # @. Then zy € F(G,xq) if there exists an f € Xg# such
that

@) Ifllx =1,
(ii) f(zo) + sup,eq d(g,To) < supyeq f(g), and
(iii) f(zo) — f(20) = d(z0, 20).

Proof. For any g € G, we have

d(g, zo)
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This implies

sup d(g, 20) sup f(g) — f(zo) + d(z0, 20)
g€G geqG

sup d(g, zo) + d(zo, 20)
9eG

sup d(g, z0)-
geaqg

v v

vV

This implies that

sup d(ga ZO) = sup d(ga (L'()) + d(.’l)o, ZO),
Ige; g€eG

i. e., z9 € F(G, ). a

Remark 6. For normed linear spaces above the result and also its converse are proved
in Elumalai & Ravi [4]. It is not known whether the converse part is true in metric
spaces. Some more results concerning F(G, zg) have been proved in normed linear
spaces in Elumalai & Ravi [4]. It will be interesting to prove those results too in

metric spaces.
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