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BASICALLY DISCONNECTED SPACES AND
PROJECTIVE OBJECTS

CHANG IL KIM

ABSTRACT. In this paper, we will show that every basically disconnected space is
a projective object in the category Tych, of Tychonoff spaces and o Z#-irreducible
maps and that if X is a space such that SAX = ABX, then X has a projective cover
in Tych,. Moreover, observing that for any weakly Lindeldf space, Ax : AX — X
is 0 Z*-irreducible, we will show that the projective objects in wLind, of weakly
Lindeléf spaces and o Z#-irreducible maps are precisely the basically disconnected
spaces.

1. INTRODUCTION

All spaces in this paper are Tychonoff spaces and for any Tychonoff space X,
Bx : X — BX denotes the Stone-Cech compactification of X.

Gleason [4] showed that the projective objects in the category of compact spaces
and continuous maps are precisely the extremally disconnected spaces and that
each compact space has an essentially unique projective cover, namely its absolute
(EX,kx) (cf. Porter & Woods [8]).

Iliadis [6] (resp. Banaschewski [2]) proved similar results for the category of Haus-
dorff spaces (resp. regular spaces) and perfect continuous maps.

Henriksen, Vermeer & Woods [5] showed that the quasi-F spaces are the projec-
tive objects in the category Tych, of Tychonoff spaces and Z#-irreducible maps and
that a space X has a projective cover in Tych, if and only if QF(8X) = B(QF X).

In this paper, we will show that every basically disconnected space is a projective
object in the category Tych, of Tychonoff spaces and oZ#-irreducible maps and
that if X is a space such that SAX = ABX, then X has a projective cover in Tych,.
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Moreover, we will show that the projective objects in wLind, of weakly Liadel6f
spaces and oZ#-irreducible maps are precisely the basically disconnected spaces.
For the terminology, we refer to Addmek, Herrlich & Strecker [1] and Porter &
Woods [8].

2. BASICALLY DISCONNECTED SPACES

For any space X, let Z(X) denote the set of all zero-sets in X, R(X) the set of
all regular closed sets in X and Z(X)# = {clx(intx(A)) : A € Z(X)}. Then R(X)
is a complete Boolean algebra in which join, meet and complemented are defined as

follows:
If A€ R(X) and {A;:7€ I} C R(X), then

V{A, Tl € I} = Clx(U{intx(Ai) 11 € I}),
A{A;: i€ I} =clx(intx(N{A4i: i € I})), and
A= Clx(X - A)

For any space X, Z(X)# is a sublattice of R(X).

A Boolean algebra L is called o-complete if L has countable joins and hence
countable meets. We note that any intersection of o-complete Boolean subalgebras
of a complete Boolean algebra L is again o-complete and so for any sublattice M of
a complete Boolean algebra L, there is the smallest o-complete Boolean subalgebra
of L containing M, which will be denoted by oM.

Definition 2.1. A space X is called basically disconnected if for any zero-set Z
in X, intx(Z) is closed in X.

It is well-known that X is basically disconnected if and only if X is basically
disconnected (cf. Vermeer [9]). Recall that a subspace S of a space X is called
Z-embedded in X if for any zero-set Z in S, there is a zero-set A in X such that
Z=ANS.

Proposition 2.2. Let X be a space. Then the following are equivalent:

(1) X is basically disconnected.
(2) Z(X)# = 0(Z(X)#) = B(X), where B(X) is the set of all clopen sets in X.
(3) For any zero-set Z in X, intx(Z)U (X — Z) is dense C*-embedded in X.
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Proof. (1) = (2). Since X is a basically disconnected space, B(X) = Z(X)#. Since
Z(X)# C o(Z(X)#), it is enough to show that Z(X)# is a o-complete Boolean
algebra. Let {A, : n € N} be a sequence in Z(X)#. Then

A\{An: ne N} =clx(intx ([ [{4n : n € N})).

Since a countable intersection of zero sets is a zero set, [|{A, : n € N} is a zero
set in X and so intx([{An : n € N}) is closed because X is basically disconnected.
Hence A{An : n € N} € Z(X)#. Since Z(X)# = B(X) is Boolean, Z(X)# is a
o-complete Boolean algebra.

(2) = (3). Take any zero-set Z in X. Since intx(clx(intx(Z))) = intx(2),
by (2), intx(Z) U (X — Z) is a dense cozero-set in X and so intx(Z) U (X — Z) is
Z-embedded in X (cf. Blair [3]). Let T = intx(Z) U (X — Z). Let A and B be
zero-sets in T' such that int7(A) Ninty(B) = &. There are zero-sets C and D in X
such that A = CNT and B = DNT. Since T is dense in X, int x (C) N intx (D) = &.
By (2), clx(intx(C)) N clx(intx (D)) = @. By Urysohn’s extension theorem, T is
C*-embedded in X.

(3) = (1). Take any zero-setZ in X. By (3), intx (Z) U (X — Z) is C*-embedded
in X. Since intx(Z) and X — Z are disjoint clopen stes in X,

Clx(intx(Z)) Nelx(X —2) =@

and so clx(intx(Z)) C intx(Z). Hence X is basically disconnected. O

3. MINIMAL BASICALLY DISCONNECTED COVERS OF SPACES

A map f:Y — X is called covering if f is onto, continuous and perfect.

Definition 3.1. A covering map f:Y — X is called
(a) Z#-irreducible if {f(A): A € Z(Y)#} = Z(X)#, and
(b) oZ#-irreducible if {f(A) : A€ 0 Z(Y)#} = 0 Z(X)*.
For any map f:Y — X, and A CP(Y) and B C P(X), let
f(A) ={f(A): A€ A} and f~ (B = {cly(f'(B)) : B € B}.
For any covering map f : Y — X, f~H(Z(X)#) C Z(Y)# and hence 0 Z(X)# C

f(cZ(Y)#). Thus a covering map f : Y — X is 0 Z#-irreducible if and only if
fleZ(Y)#) C 0Z(X)# and if f is Z#-irreducible, then it is 0 Z#-irreducible.
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Proposition 3.2. For any covering maps g : Y — W, h . W — X, hog is
o Z#-irreducible if and only if h and g are o Z# -irreducible.

Definition 3.3. Let X be a subspace of a space Y. Then X is called 0 Z#-embedded
inY if for any A € 0 Z(X)#, there is B € 0Z(Y)# such that A = BNX. A subspace
X of a space Y is called Z#-embedded in Y if for any A in Z(X)#, there is B in
Z(Y)# such that A= BnX.

Proposition 3.4. If X is a dense Z-embedded subspace of a space Y, then X 1is
Z#.embedded in Y.

Theorem 3.5. Consider the commutative diagram

P14 x

|

Yy 25w

where X,Y,P and W are spaces with P C Y and X C W, j, and jo are dense
embeddings and f, g are covering maps. Then g is 0 Z#-irreducible and P is oZ¥#-
embedded in Y if and only if f is 0 Z#-irreducible and X is 0 Z#-embedded in W.

Proof. (=) Take any A € 0Z(P)¥#. Since P is 0Z#-embedded in Y, there is B
in ¢Z(Y)# such that A = BN P. Note that f(A) = f(BNP) = g(B)N X (cf.
Porter & Woods [8]). Since g is 0 Z#-irreducible, f(A) € 0Z(X)#. Thus f is 0 Z#-
irreducible. Let C € 0Z(X)#. Then clp(f~'(intx(C))) € cZ(P)#. Since P is
o0Z#-embedded in Y, there is D € 0 Z(Y)# such that D N P = clp(f~!(intx(C))).
Then C = f(D N P) = g(D)N X. Since g is 0 Z#-irreducible, g(D) € 0 Z(W)# and
so X is 0 Z#-embedded in W.

(<) Take any A € 0Z(Y)#. Since j; is a dense embedding, ANP € 0Z(P)# and
f(ANP) = g(ANP) = g(A)NX. Since f is 0 Z#-irreducible, g(4) N X € 0 Z(X)*.
Since X is 0 Z#-embedded in W, there is B € 0 Z(W)# such that g(A)NX = BNX.
Since js is a dense embedding and g(A), B are regular closed sets in W, g(4) = B.
Thus g is 0 Z#-irreducible.

Take any C € 0 Z(P)#. Since f is 0 Z#-irreducible, f(C) € 0 Z(X)#. Since X is
oZ#-embedded in W, there is D € 0 Z(W)# such that f(C) = DN X. Since g is a
covering map, cly (g~ (intw (D))) € 0Z(Y)¥. Then

f(ely (g7 (intw (D)) N P) = g(cly (97" (intw(D)))) N X = DN X = f(C).
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Hence cly (¢~ (intw (D))) N P = C. Thus P is 0 Z#-embedded in Y. O

Definition 3.6. Let X be a space. Then

(a) a pair (Y, f) is called a cover of X if f: Y — X is a covering map,

(b) a cover (Y, f) is called a basically disconnected cover of X if Y is basically
disconnected, and

(c) a basically disconnected cover (Y, f) of X is called a minimal basically dis-
connected cover of X if for any basically disconnected cover (Z,g) of X,
there is a covering map h: Z — Y with foh=g.

Recall that a space X is called weakly Lindeldf if for any open cover U of X, there
is a countable subfamily V of U such that [JV is dense in X and a space X is called
locally weakly Lindelof if every element of X has a weakly Lindel6f neighborhood.

For any compact space X, there is a minimal basically disconnected cover
(AX,Ax) of X such that AX is the Stone-space of 0Z(X)# and Ax(a) = Na
for a € 0 Z(X)# (cf. Vermeer [9]). Vermeer showed that every Tychonoff space has
a minimal basically disconnected cover (AX, Ax) and in Kim (7], it was shown that if
X is locally weakly Lindel6f space, then AX is given by the fixed o Z(X)#-ultrafilter

space.

Lemma 3.7. Let X be a weakly Lindelof space. Then for any A € oZ(X)¥#,
clax (A% (intx (A))) = A*, where A* = {a € AX : A € a}.

Proof. Let A € 0Z(X)#. Then for any o € A*, Ax(a) € A. Take any z € intx(A).
Since Ax is onto, there is @ € AX such that Ax(a) = z. For any C € q,
z € clx(int x (C)) and hence int x (C)Nint x (A) # @. Thus for any C € a, CAA # @.
Since « is a 0 Z(X)#-ultrafilter, A € a (cf Porter & Woods [8]). Thus z = Ax(a) €
Ax(A*) and so intx(A) C Ax(A*). Since Ax is closed, clx(intx(A)) C Ax(A*).
Hence A = clx(intx(A)) = Ax(A*). Since Ax is a covering map and

Ax(clax(Ax'(intx(4))) = 4, clax(Ax'(intx(4))) = A

(cf. Kim [7]). O
Corollary 3.8. For any weakly Lindeléf space X, Ax : AX — X is oZ%#-

irreducible.

For any space X, let (ASX,A) be the minimal basically disconnected cover of
BX. Kim [7] has shown that for any space X, A~!(X) is C*-embedded in ABX if
and only if A=1(X) is Z#-embedded (or Z-embedded) in ASX.
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Theorem 3.9. Let X be a space. Then Ax : AX — X is 0 Z#-irreducible if and
only if A=1(X) is C*-embedded in ABX.

Proof. Suppose that Ax is oZ#-irreducible. Let Ag be the restriction and core-
striction of A to A7!(X) and X, respectively. Then there is a covering map g :
BAX — BX such that 8x o Ax = g o fax. Since BAX is a basically disconnected
space, there is a covering map h : SAX — ABX with Ao h = g. Hence there
is a covering map k : AX — A71(X) with Agok = Ax and jok = ho Bax,
where j : A7}(X) — ABX is the inclusion map. Since Ax is 0 Z#-irreducible, by
Proposition 3.2, & and Ao are g Z#-irreducible maps. By Theorem 3.5, A~(X) is
Z#.embedded in ABX and hence A™1(X) is C*-embedded in ABX.

If A"}(X) is C*-embedded in ABX, then A~1(X) is 0 Z#-embedded in ABX and
so, by Theorem 3.5 and Corollary 3.8, Ax is o Z#-irreducible. 0

4. PROJECTIVE OBJECTS AND BASICALLY DISCONNECTED SPACES

Definition 4.1. Let C be a topological subcategory of the category Top of topo-
logical spaces and continuous maps:

(a) An object X in C is called a projective object in C if for any objects Y, Z €
C, morphism f: X — Y in C and onto morphism g : Z — Y in C, there
is a morphism h: X — Z in C with go f = h.

(b) A pair (X, f) is called a projective cover of an object Y in C if X is a
projective object in C and f : X — Y is a morphism of C that is an onto,
closed and irreducible map.

Gleason [4] showed that the projective objects in the category of compact spaces
and continuous maps are precisely the extremely disconnected spaces and that
each compact space has an essentially unique projective cover, namely its absolute
(EX, kx). lliadis [6] (resp. Banaschewski [2]) proved similar results for the category
of Hausdorff spaces (resp. regular spaces) and perfect continuous maps.

A Tychonoff topological space is called a quasi F-space if each dense cozero-
set of X is C*-embedded in X. Henriksen, Vermeer & Woods [5] showed that the
quasi-F' spaces are the projective objects in the category of Tychonoff spaces and
Z#-irreducible maps. In this section, we will investigate projective objects for the
category of basically disconnected spaces and ¢ Z#-irreducible maps.



BASICALLY DISCONNECTED SPACES AND PROJECTIVE OBJECTS 15

Let wLind, (resp. Tych,) be the category of weakly Lindelof spaces (resp. Ty-
chonoff spaces) and o Z#-irreducible maps.

Lemma 4.2. Let X € wLind, and f : Y — X be a 0 Z#-irreducible map. Then
there is a 0 Z%-irreducible map k: AX — Y with fok= Ax.

Proof. Since X is weakly Lindelof and f: Y — X is a covering map, Y is weakly
Lindelof. Since f o Ay is a covering map, there is a covering map g : AY — AX
with f o Ay = Ax o g. By Proposition 3.2, g is 0 Z#-irreducible. Since AX and AY
are basically disconnected spaces, g is a homeomorphism. Let £ = Ay o g~*. Then
k is a 0 Z#-irreducible map and fok = Ax. a

Theorem 4.3. Let X be a space. Then

(a) if X is a basically disconnected space, then X is a projective object in Tych,,
(b) if X is a projective object in Tych, and for any zero-set Z in X, intx(Z)U

(X — Z) is Z-embedded in X, then X is a basically disconnected space, and
(c) if BAX = ABX, then X has a projective cover in Tych,,.

Proof. (a) Suppose that X is a basically disconnected space. Let f : X — Y and
g:Z — Y be 0Z%-irreducible maps and Y, Z € Tych,. Since ASX is a basically
disconnected space, there is a covering map h : Z — BY such that hofz = By og.
By Theorem 3.5, h is 0 Z#-irreducible. Since 8X is basically disconnected, there is
a covering map k : BX — ABY such that Agy ok =1, where [ : BX — BY is the
Stone extension of By o f. Since I is 0 Z#-irreducible, k is 0 Z#-irreducible. Hence
k is a homeomorphism, because X and ABY are basically disconnected. Note that
there is a covering map ¢ : ABZ — ABY such that ho Agz = Agy ot. Since
h is o Z#-irreducible, t is o Z#-irreducible and hence ¢ is a homeomorphism. Let
m = Agzot lokopBx. Since Agz ot~ ok is a covering map, m(X) = Z (cf. Porter
& Woods [8]). Hence gom = f and m is 0 Z#-irreducible. Thus X is a projective
object in Tych,.

(b) Suppose that X is not basically disconnected. By Proposition 2.2, there
is a zero-setZ in X such that (X — Z) Uintx(Z) is not C*-embedded in X. Let
T = (X — Z)Uintx(Z). By the assumption, T' is Z-embedded in X. There is a
continuous map f : BT — BX such that f o fSr = Bx o jr, where jr: T — X is
the inclusion map. Clearly, f is 0 Z#-irreducible. Let Y = f~1(X). Letk: Y — X
be the restriction (resp. corestriction) of f to Y (resp. X). By Theorem 3.5, k is
o Z#-irreducible. Since the identity map 1x : X — X is o Z#-irreducible and X
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is a projective object in Tych,, there is a o Z#-irreducible map h : X — Y such
that ko h = 1x. Hence h is a homeomorphism and so k£ is a homeomorphism.
Moreover, there is a continuous map [ : T — Y with kol = j7. Hence [l is an
embedding and so T is C*-embedded in Y. Since T is not C*-embedded in X,
there are disjoint zero-sets A; and Ag in T such that cly(A4;) Nclx(A42) # @. Pick
p € clx (A1) Nclx(Az). Since h is continuous, h(p) € cly(h(A1)) Ncly(h(A2)) and
hence cly(h(A41)) Ncly (h(Az2)) # @. This is a contradiction that T' is C*-embedded
in Y. Hence X is a basically disconnected space.

(c) Suppose that SAX = ASX. Then there is a homeomorphism h : SAX —
ABX such that Sx o Ax = AohoBrx. By Theorem 3.5, Ay is o Z#-irreducible.
By (a), (AX, Ax) is the projective cover of X in Tych,. O

Corollary 4.4.

(a) The projective objects in wLind, are precisely the basically disconnected
spaces.
(b) If (Y,g) is a projective cover of X in wLind,, then Y and AX are homeo-

morphic.

Proof. (a) If X is a basically disconnected and weakly Lindeldf space, then by (a)
in Theorem 4.3, X is a projective object in wLind,.

Suppose that X is a projective objective in wLind,. Then Ax : AX — X is
o Z#-irreducible and hence there is a ¢ Z#-irreducible map h : X — AX such that
Ax oh = 1x. Hence h is a homeomorphism and so X is a basically disconnected
space.

(b) By Lemma 4.2, there is a 0 Z#-irreducible map k : AX — Y such that Ax =

gok. By (a), Y is a basically disconnected space and hence k is a homeomorphism.
O
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