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THE EIGENVALUE PROBLEM AND A WEAKER FORM OF
THE PRINCIPLE OF SPATIAL AVERAGING

HvyukJiNn KWEAN

ABsTRACT. In this paper, we find explicitly the eigenvalues and the eigenfunctions
of Laplace operator on a triangle domain with a mixed boundary condition. We also
show that a weaker form of the principle of spatial averaging holds for this domain
under suitable boundary condition.

1. INTRODUCTION

In this paper, we introduce a weaker form of the principle of spatial averaging
(PSA) which was introduced by Mallet-Paret & Sell {3] to prove the existence of
inertial manifolds for a class of scalar-valued reaction diffusion equations

u = vAu+ f(z,u) (1)

under suitable conditions. In the study of nonlinear dissipative evolutionary equa-
tions, the PSA is crucial to prove the existence of inertial manifold. The PSA is a
property which the Laplacian over a bounded Lipschitz domain Q@ C R",n < 3, may
(may not) have. However it is not clear at all for which domains and boundary condi-
tions PSA holds; indeed, since this property depends heavily on the eigenvalues and
the eigenfunctions of Laplace operator on a domain, it is hard to prove the existence
of inertial manifold for various domain and various boundary condition. However,
Kwean {2] found a weaker form of PSA and then proved the existence of inertial
manifold for different type of domain with homogeneous boundary conditions.

The purpose of this paper is to find explicitly those information for particular
domains and boundary condition and then show that a weaker PSA holds for the
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domain and boundary condition we study here. Therefore, our result helps us to
extend the result of Mallet-Paret & Sell {3] for our domain and boundary condition.
The eigenvalue problem that we are concerned is of the form

Au+du=0 in Q,, (2)

where €2, is a subset of R?,n = 2,3, as follows:

Q= {(z1,22) € R?: 0<z2<V3ay, 0< 21 <3},
Q3 = Qs X [O,Lﬂ'].

Also, we let

Sy = {((L‘l,l‘g) € 392 L= % ,
S3 = {(z1,22,73) € 03 : z1 = T}, (4)
SE = 80\ 5.

Then we consider the following boundary conditions

u =0 on S, (
ou 5)
I 0 on S%.

This problem is one of classical problems which many authors have been studied
for various types of domains (c¢f. Courant & Hilbert [1]). However, most of previous
results were concerned about the homogeneous boundary conditions. In particular,
Pinsky [4] did for equilateral triangle with homogeneous Dirichlet and Neumann
boundary conditions.

Here, we are concerned about a different triangle domain and a mixed boundary

condition.

2. THE EIGENVALUE PROBLEM

For our purpose, we basically adapt the idea of Pinsky [4]. Consider the following
eigenvalue problem: For n = 2, 3,

Au+du =0 in Q,
U =0 on &g, (6)

Oou
an =0 on S§.
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To solve this problem, first we introduce a notation. For k = (ki,ke) € Z?2, let
f~(k1,k2)($1a Z2) be a function defined as follows:

fe(@1,22) = €3 (kle + 24 2:!:2) + /3 ((k1 —ko)zy + 1 2$2>

V3 V3
. ki +k . k1 — 2k
+ et/ ((k1 —k2)z1 — 1;5 2x2) +e'/? (—klfm + 7 2372)
. 2k — k ; kg — 2k
+ ¢i/3 <—k1m1 + 2\/5 1$2> +etf? (k2-'171 + 2 /3 1x2> - (7)

Then we obtain the following result.

Theorem 1. Let Q, C R*, n = 2,3 be given in (3). Then the eigenvalues and the
eigenfunctions of —A for the given boundary conditions in (5) are of the forms:
Forn=2,

_ A2
Ak = 27(k1 + k2 ) kle), ) (8)
Ftk1 k) (Z1,%2) = Fky k) (%1, 22) = fia kr) (T15 T2),
where f(kl,kz)(xl,wg) is given in (7) and k = (k1,k2) € Z? and, for n =3,
_ 40 0 k3
Ak = 27(k1 + k5 — kik2) + 73 o)

ks
F(hs o es) (215 T2, B3) = €08 T3 (ks o) (21, T2)

(for n =3, k = (k1, k2, k3) € Z3, k3 > 0) satisfies that ky and ko are multiples of 6.

Proof. 1t suffices to prove the case n = 2 and then to apply separation of variable
to obtain (9) for n = 3. Now, we consider the parallelogram

Q=1 (z,0) €R?: 0<z0<3V3r, 2 <z <67r+$—2},
{( 1, T2) 2 73S0 7
and the reflection operators

Ry : (z1,22) = (7w —1z1,%2),

Ry : (:1,‘1,.’1)2) - (.’L‘1,—.’Z)2),

s (10)
: _TL, T2y T1IVE T2
Rs: (z1,22) — ( 24—\/52, 3 +2).

Then there is an isomorphism between L2(€2) and the following subspace of L2(Q),

V={feL?’Q): Rf=-f, and R;f = ffori=2,3},
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obtained by f — flo for f € V. Then, every eigenfunction of —A on ) can
be obtained by solving the equation on V and the restriction to Q satisfies the
boundary conditions in (6). By the classical method, we can obtain a complete list
of the eigenfunctions of —A on 2 given by linear combination

f(z1,22) = exp(i(az; + Bz2)),
where (o, B) are in the dual lattice satisfying
3arm + 3V3Bn = 2kim, 6ma = 2kom

for (ki1, ko) € Z2. Therefore, a = k2/3, B = (2k1 — k2)/3+/3 and hence
4
Ak1k2 = 012 + ,82 = ﬁ(k% + kg - k’lkz).

The corresponding eigenfunction is of the form

f = Z Akl,k2el/3 (k2$1 + Mw2) , (11)
(klykz) \/g

where the sum is taken over (ki,k2) with Az, = A. Now applying the reflection
operator to the function in (11) in order to find functions satisfying the reflection

conditions, we obtain some conditions on Ag, k, such that

le = jf = Ak gy = —Aky—ka -k, €T3,
R2.): = ./: = Ak1,k2 = Akz—khku (12)
R3f=f = Akky = Ak ki—ka-

If for fixed (k1,k2) we have Ay, x, = A, then by iterating the operators Ry, R3 we
obtain that

A= Agky = Aky—kr b = Aka—br—ky = Akoby = Ay by —ky = Ak ky—ky-

Therefore, for each k = (ky, k) € Z2, the function f defined in (7) satisfies R;f = f
for i = 2,3. On the other hand, if we apply the operator R; to the function f
for k = (k1,k2), then by the first restriction of (12), we have le(khkz) = f(kz,h)
whenever k1 and ko are the multiples of 6. Therefore, for each k = (ky, k2) € Z?, the
solution of the first equation of (6) with respect to the eigenvalue A on the space V
has of the form in (8). Then we can easily check f(, x,) = f(kl,kz) - f(,cz,kl) satisfies

the equation (6). o
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3. A WEAKER FORM OF PSA

Let —A = A be the Laplace operator on @ C R™ with a choice of boundary
condition and let {A\,}°_; denote the eigenvalues of A ordered (with multiplicities)
so that

0< <L <A, 200 as m— 00,

and let {em}%_; C L? be the set of corresponding eigenfunctions. The for each
A >0, set
Py =span{em : An <A}, Q) =closure(span{em : Apm > A}).

Also, let Py and Q) = I — P, denote the orthogonal projections onto these subspaces.

Definition. For a given (bounded Lipschitz) domain © C R”,n < 3, and choice
of boundary conditions for Laplace operator, we say that the weaker PSA holds if
there exists a quantity £ > 0 such that for every ¢ > 0,x > 0 and any bounded
subset V C H?, there exist arbitrarily large A = A(V)) > & such that

||(P/\+I€ - PA—E)(BU - 'DI) (P/\—Hc - P)\—ﬁ)nop <e (13)
holds for any v € V; and such that
)\m+1 - )\m > § (14)

where m satisfies A, < A < A1 and || - [|op is the norm of an operator on L? and
7 = (volQ)~! [, vdz, and B, is an operator on L? given by (B,u)(z) = v(z)u(z), v €
L?, zeq.

Theorem 2. The weaker PSA holds for the domains given in (3) with the boundary
condition given in (5).

When the space is of dimension 2, it is directly consequence of the following

proposition.

Proposition 3. Let T be a function defined on Z? by T(k1,ks) = Mgk, for each
k = (ki,ko) € Z2. Then for any given h > 0 there exists arbitrarily large m > 0
such that

T(ky, ko) ¢ [m,m+h] for (ki,ko) € Z2.

Proof. The proof of this result follows immediately from Mallet-Paret & Sell [3]. O
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Remark. Since h > 0 is given arbitrarily, Proposition 3 says that for sufficiently
large h > 0, there exists an integer m > 0 such that the difference of two consecutive

eigenvalues Ap,4+1 and A, satisfies
Am+1 — Am > h.

This means that the eigenvalues have arbitrarily large gap. Hence, whene > 0,k > 0,
and a bounded set V C H? are given, then for sufficiently large h > 0 with A > 2k,
we can choose m > 0 satisfying the conclusion of Proposition 3. Then there exist

an eigenvalue A\, so that.
An<m<m+h < Ap+l.
If we choose A = m + % and £, 0 < £ < h, then (A — K, XA + k] C [m, m + h] implies
that
Py — Py =0 and Apg1— Ay > €&

For the case n = 3, we consider the following proposition.

Proposition 4. Assume that L? is a rational number. For k = (ky, k2, k3) € Z3 let
|E||? = 24—7(k% + k2 — k1k2) + %% Then there exists £ > 0 such that for any k > 1
and d > 0, there exists an arbitrarily large A > 0 satisfying two conditions;

(i) whenever ||k|?, |I|> € (A\— &, A+&] with k, | € Z3, one has either k =1 or

|k =1l > d, and

(i) k)2 ¢ A — 5,2 +5) for each k € Z3.
Proof. Since the proof is exactly the similar as one in Kwean [2] and Mallet-Paret
& Sell [3], we omit the proof. |

From the result of Proposition 4, we can obtain the following.

Proposition 5. Let Q3 be given in (3). Fiz the boundary condition (5). Let V be
a bounded subset of H*(Q3). Then for any € > 0 and k > 1, there exists arbitrarily

large A = MV') > k such that
/ (v — 9)p?dx
Q3

for any v € V and p € Range (Pyyx — Px_x) C L? with ||p||12 = 1.

<e (15)

Proof. Note that the product of any two eigenfunctions of the form in (9) is also a
finite combination of eigenfunctions of —A. Then by combining the property (i) of
Proposition 4 and the fact that any bounded set of H? is a compact subset of L2
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for n < 3, the inequality (15) can be obtained. For more detailed proof, we refer to
Mallet-Paret & Sell (3] and Kwean [2]. a

Proof of Theorem 2. Fix a quantity £ > 0 satisfying property (ii) of Proposition 4.
Let € > 0,5 > 0, and a bounded subset V' C H?(23) be given. Then we have
arbitrarily large A > & satisfying the property (i) of Proposition 4 and the inequality
(15). Therefore the inequalities (13) and (14) can be satisfied by the choice of £ > 0
and A > 0. O
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