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COLUMN-REDUCED ORTHOGONAL RATIONAL
MATRIX FUNCTIONS WITH
PRESCRIBED ZERO-POLE STRUCTURE

JEONGOOK KM

ABSTRACT. An inverse interpolation problem for rational matrix functions with a

certain type of symmetricity in zero-pole structure is studied.

1. INTRODUCTION

Let o be a subset of the complex plane C and V be an invertible m x m constant

matrix which is either symmetric or antisymmetric:

VI =aVv
where @ = +1. (It then follows that m is even in the antisymmetric case where
a=-1)
By a o-admissible Sylvester data set, it is meant a set of matrices

T = (C—,r, A,r; A(, Bc; F) (1.1)
of sizes m X 1y, np X Ng; n¢ X N¢, N X M; N X Ny, Tespectively, where
o(Ax)Uo(A¢) Co,

(Cr,Ar) isa null—kerne.l pair (i e., ﬂ;‘;al Ker Cr AL = {0}), (A¢, Be) is a full-range
pair (i. e., E;ial Im AéBC = C™) and « satisfies the following matrix equation
F'A; — AT = B:C.
Here, o(Ay) is the spectrum of the matrix A;.
For a given 7, we associate another set of matrices

T = (-v'B], A]; AL, cTv; 1T). (1.2)
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It is easy to check that 77 is a ¢o-admissible Sylvester data set if and cnly if
7 is. For two o-admissible Sylvester data sets 7 = (Cy, Ar; A¢,B¢;y) and 7' =
(Cr, Az Al B3 '), 7 is similar to 7' if there exist invertible matrices ® and ¥
such that

Cr = C.&,
A = o714 B,
A, = ALY,
B; = U7'B,

r = v 'r'e.

If we want to emphasize the matrices ® and ¥ we say that 7 is (®, ¥)-similar to
7', If 7 is similar to 77, 7 is said to be symmetric and is (®, a®T)-similar to 77 for
an invertible matrix ® (see Ball & Kim [5]).

Let ©(2) be an M x M rational matrix function. For a Sylvester data set 7, ©
is said to have 7 as its C-null-pole triple if

OPy = {Cr(zI — Ax) 'z + h(2) | © € C™, h € Py such that

> Reso—zy (2] — A¢)"1Bch(2) = Iz},
20€C
where Py is the set of polynomials with coefficients in CM.

Motivation for similarity of Sylvester data sets can be seen from the formula for
© Py, that is, changing 7 to a similar 7’ does not change @ Py, and it is the only way
two C-admissible Sylvester data sets give rise to the same © P (see Ball, Kaashoek,
Groenewald & Kim [4]).

In this paper, our aim is to prove the following theorem.

Main Theorem. If 7 is a given o-admissible Sylvester data set which is similar to

7T then there exists an m x m rational matriz function ©(z) for which
(i) © has 7 as its C-null-pole triple,
(ii) © is column reduced at infinity, and
(iii) ©7(2)VO(z) = P, for all z € Ceo, where P = [p;;] is the particular canonical
choice of invertible symmetric (resp. antisymmetric) m X m constant matriz
L j=m+1—iandl1<i<m,
Pij = 0, otherwise
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for the symmetric case (a = 1), (resp.

1, 1<i<Bandj=m+1—i
pij = { —1, F<i<mandj=m+1-—4,
0, otherwise
for the antisymmetric case (& = —1 and m even)).

In this case the column indices of © are
=y, Qg _at)07 Ty O, A,y A,

where (m — 2t) zeros and a; > --- > oy are the nonzero observability indices of
(Cr, Ax).

A rational matrix function satisfying (iii) is said to be V-orthogonal.

The problem of finding a rational matrix function having the prescribed null-pole
structure (that is, satisfying (i)), known as the inverse spectral problem for rational
matrix functions, is studied in literature (e. g., [1, 3, 6, 7, 8, 9]). In particular, the
problem of finding O satisfying (i) and (ii) is studied in [2, 4]. Without the condition
(ii), Ball & Kim [5] solved a problem of nonhomogeneous symmetric interpolation.

As an application of Main Theorem, we can think of a parametrization of the set of
symmetric (or anti-symmetric) rational solutions of a set of bitangential interpolation
conditions having also the minimal possible McMillan degree, as in Ball, Kaashoek,
Groenewald & Kim (4], where the parametrization is done for the problem without
the symmetricity condition. Also, in Ball & Kim [5], a bitangential interpolation
problem for symmetric (or anti-symmetric) rational matrix functions is solved and
a parametrization of all solutions is given (but, without considering the condition
on their McMillan degree). To derive the parametrization from which the McMillan
degrees of the solutions of nonhomogeneous interpolation problem can be read, we
need to find a solution of the homogeneous problem which is column reduced at
infinity, as it is done in the main theorem of this paper.

2. PRELIMINARIES

Let zp be a complex number such that

20 ¢ U(A,r) U O’(Ac) U {0},
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N be a complement of kerI" in C"~, and K be a complement of ImT" in C™*. We
choose I't : C — C™ to be a generalized inverse of I such that ImI't = N
and KerI'" = K. Let p, be the projection of C"* onto KerI' along N and p,
be the projection of C™ onto K along ImI'. We write p, for the embedding of
KerI" onto C** and n¢ for the embedding of K into C". We may choose bases
{dig : k=1,---, 05 ; j=1,---, t}and {fp: k=1, aj ; 7 =1, s},
respectively, in KerI' and K, respectively, such that the following hold:
(i) {djx: k=1,--+, @j ; j=1,---, t} is a basis of KerI' N Ker C.
(i) Ardjky1 =djr,” k=1,--+, aj — L.
(iii) {fjw; : 4 =1,---, s} is a basis for a complement of ImT in ImI" + Im B,.
(iv) Acfik+1 — fixk €ImT +Im B¢, k=0,---, w; — 1 with f;0:=0.
Without loss of generality, we assume that @; > - > a; >0and wy > -+ >
ws > 0. Such a basis {d;i} (resp. {fjx}) is called an outgoing (resp. incoming) basis
for 7 at infinity (see Gohberg, Kaashoek & Ran [8]). With these bases we associate

the following two operators.
S :KerI’ = Ker F, dek = dj,k+1 (dj,aj+1 = 0), (2.1)
T:K — K, Tfik = fig+1 (fjw+1 = 0). (2:2)

In the sequel I’y : K — KerI is an arbitrary linear transformation which we may
choose freely.
From Ball, Kaashoek, Groenewald & Kim [4], we can choose operators

F:K-—>C" A K - C',
H:C™ — KerT, A9 : C™ — KerT

such that the following identities are fulfilled:

(Z()I - Ac)FAm = AC'I]CT - 'r;g - BgF, (23)
Agll—‘(zoI — Aﬂ») = SpWAﬂ» - Pr — HCﬂ-, (24)
A2177((I - Z()T) - (I - Z()S)pﬂ-Alz = FlT e SPl — HF. (25)
Let
WI—-l . .
X = - Z Al ApT9 : K — C"r, (2.6)
3=0
a;—1 ) ]
Yi=— )Y $A4nAl:C% - KerT, (2.7)

§=0
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and
Too = (CaX(I~2T)—F,T; S, (I~ 28)Y B¢+ H; Too) (2.8)
with
Too = =Y (20] — A)T(20I — A)X + prl(20] — As)X + Y (20I — A¢)nc = Ty. (2.9)
Then 7 is a minimal complement of T at infinity. Also, it is similar to 7'07; when
7 is similar to 77 (cf. Kim [10]). More specifically, if 7 is similar to 77, there exists

an invertible matrix ¢ for which
Cr=-V'B{®,  A,=07'479, (2.10)
= —-ad TT7. (2.11)
Let {djx : k=1, -+, o5 ; j=1,---, t} be an outgoing basis for KerI" and U be
an n, X n, invertible matrix having dj as its (o1 +ag + -+ + aj_1 + k)t column.

If we set N to be the subspace generated by the last (m — dim Ker I')-columns of U
and
fik=0TU Teata; yp1» 1<j<t 1<k<ay, (2.12)
then {fjx:j=1,--+, t; k=1,---, ;} is an incoming basis for K := ®~T(N*)
which is a complement of ImI".
Define operators S, T, H, A1, X, and Y as in (2.1)—(2.7) and let

F = —aV ' HT @,
A = —ad A7 8,
ne = & Tpr 0k,
where p, is a projection onto KerI' along N. It can be easily checked that F and
Aj» satisfy the relations (2.3), (2.5), and
T =a"5Tol, (2.13)
Y = —ap, o 1 xTT.
Finally, we choose an arbitrary operator I'; so that
I = —ap: 9~ 'TT .
Then, 7o defined by (2.8) is a minimal complement of 7 at infinty and is similar
to Tg;.
With the choices of 8, p¢, I'1, S, H, 1z, T, F, we have the following theorem (cf.
Kim [10]).
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Theorem 2.1. For a given o-admissible Sylvester data set T similar to 71, there

erists a rational matriz function ©(z) for which
(i) © has T at its C-null-pole triple, and
(i) 6T (2)VO(2) =V, for z € Cop.
If 7 is the same as (1.1), such a ©(z) is given by
O(2)
= I—(2—20)Cr (2] — Ax) " H{T + (20 — Az) X p—T19¢ (20l — A¢) 1 B¢
+ (208 —I)7'H
+ (2 — 20)[Cr X (I — 2oT) — F)(I — 2T) ' pc (2] — A¢)™* B¢, (2.14)
where 'V is a generalized inverse of T' satisfying

THT = —a@ (T1)T07,

3. MAIN THEOREM

To prove our main theorem, we need the next theorem.
Theorem 3.1. Given is
T = (Cr, Ar; A¢, Bg; T)
which is similar to 7T, Let {djx:5=1,---, t; k=1,---, o} be an outgoing basis
for T at infinity and {fjx:j=1,---, t; k=1,---, o } be given by (2.12) and let
zo be a complex number satisfying
20 ¢ 0(Ar) Uo(Ac) U {0}

If we choose z;,y; € C™ so that

2; = C’,‘-(ZOI - A‘n’)_ldjaj) J=1-1 (31)
(A¢ — aI)™'Bey; = (I — 20T) ' fp, =1 ¢ (3:2)
then
2FVz; =0, 1<i, j<t, (3.3)
ziTVyj = adij, 1<4, 3<t, (3,4)
yWVy; =0, 1<i, j<t, (3.5)

where T is chosen as in (2.13).
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Proof. Since 7 is similar to 77 we have (2.10) and (2.11) for an invertible matrix ®.
Upon substituting the transposed version of (2.10) in places of A¢, B¢ in Sylvester
equation 'A; — A" = B;C; and premultiplying by o7 we get

(20l — ADY®TT — TT (201 — Ay) = —aCTVC,. (3.6)
By the choice of 2; in (3.1), for all 4,5 =1,--, ¢,
2 Vzj = di, (2] — AL)TICTV Cr(20] — Ar) 'djo;-
Multiplying both sides of (3.6) by —a and plug it in the above, we obtain

2] Vzj = —a{dl,, ®"T(2I — Az) dja, — dl, (20] — AT)7'®TTdjq, }.

tay;

Recalling that dio, € KerI' for all k = 1,---, ¢ and ®TT = —al'T®, the right
hand side of the above equality collapses to 0. Hence, (3.3) is proved.
Next, we substitute (2.10) in (3.1) and take transpose to obtain

z Vy; = —ade, ®TT (20l — A¢) ™ B¢ y;.
Plug (3.1) in the right hand side of above and note that
(I-2zT) ' fi1=fin+zfjz+ -+ Zgj_lfja,- (3.7)
to get
ZIVy; = adl, ®T(fj1 + zofjo + -+ + Zgj—lfja,-)-

Because fj is given by (2.12) and da, = Uea, 4. tas» 27 Vy; = ab;;. Upon substi-
tuting (3.7) in (3.2) and taking transpose, we get

- 1
nyg(A{—zOI) 1— (g}1+zongz+---+zg" g;fraj).

Plug (2.10) in places of BY, Ag and (2.12) in places of g;x and then postmultiply
both sides of the resulting equality, we obtain

ijVC,,(zOI — AU
T —1
= (€ay+ta; T ZOe£1+--~+a,~—1 +oe 2y e£1+~--+a,-_1+1)- (3.8)

Let M be an m X m matrix

M ={[z1- 22041 Ze 00, - - - 1),
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where {; = £ = ¢ if m is even and ¢} = mT“I, ly = mT“ if m is odd, 2, yx are

chosen so that
Vi =0, 1<4, j<4;
HFVi o= 6y, 1<i<ty, 1<5<4y;
HVg =0, 1<4, j<b;

53;+1V5€1+1 = 1 when m is odd.
Here, we choose Z; = z; for i = 1,---, t. Such vectors Z;, §; can be chosen. By
the choice of M,
MTVM = P = [p), (3.9)

where
1, 1<i<b, j=m+1-—4
Dij = 4 « b+l<i<m, j=m+1—1;
0, otherwise.
On the other hand, due to (2.14) and the construction of U, we derive

the (a1 +--- + ag)-column of M1Cy (2] — Az) U = e.
Hence, for the equality (3.7) to be fulfilled
y]TVM = e?,
equivalently, y; = aV- M ‘Tej. Finally, we obtain
¥ Vyi =l MVIM Te; =0
because i,j =1,---, tand M~V IMT = P. This completes the proof. O

Proof of Main Theorem. Suppose 7 is a given o-Sylvester data set similar to 77

and 7T is the minimal complement of 7 constructed as in (2.8). If we define z;, y;
by (3.1) and (3.2) for j = 1,---, t, there exist z¢+1, -+, 2o, Yt+1,°* ", Y, SO that
(3.3)-(3.5) with 1 < ¢, j < £; hold, where ¢; = [Z]. If m is odd, we can find 24, 41
so that
ZZ+1VZ£1+1 =1
and (3.6) hold for 1 <i< /4,5 =41 + 1.
Let
t = {81, if m is even;
£ +1, if mis odd;
and let
O(z) = 6(2)E,
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where ©(z) is given by (2.14) and
Bimlme o vl

Upon recalling Theorem 2.1 and the fact that ©FPy = 6Py, we see that ©(z)
satisfies (i) and that it is enough to show ETV E = P to prove (iii), where P = [p;]
is given by (2.1). But the above equality is obvious from the fact that

ziTsz, 1<, j<¥y

AVy;, fa+k<i<m, 1<j<4b;

YL Vzj, b+ Ek<i<m, 1<j<{y
2FVan,  b+k<i<m, L+h<j<m.

the (i, j)-entry of ETVE =

Here we also note that E is invertible.
The only thing left is to show that ©(z) is column reduced at infinity with column

indices —ay — a¢—1, -, —o1, 0,- -+, 0, ag,- -+, Q1.
If we set

E = [zla"" gy vy By Yiyyty Yt+1Y1, 000 ys]’

by Theorem 3.1 of Ball, Kaashoek, Groenewald & Kim [4],
O(z) := O(2)E
is column reduced at infinity with column indices

—Q1, oy, TO, 0)"'7 0, Qap, -+ Of.

afIn—t O
E_E(o ﬁ)’

s _JL i+g=t+1,
Pij 0, otherwise,

Noting that

where P = [ﬁij]txt with

it can be easily seen that ©(z) can be obtained from ©(z) by interchanging some
columns of ©(z) which is column reduced at infinity. Necessarily, ©(z) is column

reduced at infinity with column indices
—op < S <0< <0<y L1 < Lo

This completes the proof. O
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