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ON THE MINIMAX ROBUST APPROACH TO THE
TRUNCATION OF DISTRIBUTIONS

JAE WON LEE, GEORGIY L. SHEVLYAKOV, AND SUNG WO0OK PARK

ABSTRACT. As most of distributions in applications have a finite support, we intro-
duce the class of finite distributions with the known shape of their central part and
the unknown tails. Furthermore,we use the Huber minimax approach to determine
the unknown characteristics of this class. We obtain the least informative distri-
butions minimizing Fisher information for location in the classes of the truncated
Gaussian and uniform distributions, and these results give the reasonable values of
the thresholds of truncation. The properties of the obtained solutions are discussed.

1. INTRODUCTION

Robust methods are used to provide the stability of statistical inference under
the departures from the accepted distribution model. One of the basic approaches
to the synthesis of robust estimation procedures is the minimax principle. In this
case, in a given class of densities the least informative (favorable) one minimizing
Fisher information is determined. The unknown parameters of a distribution model
are then estimated by the means of the maximum likelihood method for this density
(see Huber (3], [4]). The robust minimax procedures provide a guaranteed level of
the estimator’s accuracy (measured by the supremum of an asymptotic variance) for
any density in a given class.

Dealing with the real-life problems of data processing, a statistician usually has
an information on the natural boundaries of data dispersion: the arbitrarily large
data values do not ever appear. As a rule, this information about the distribution

tails and their boundaries is rather uncertain.
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Our main goal is to suggest a method formalizing such an information about
distributions and applying the Huber minimax approach to design the precise rules
for truncating the distributions possibly defined in the infinite domain.

In Section 2, we present a brief survey of the main results within the robust
minimax approach necessary for understanding our solution. In Section 3, we set
the problem and obtain the main result including the important applications for the
truncated Gaussian and uniform distributions, and give a proof of the theorem. In
Section 4, the properties of the obtained solution are discussed.

2. MINIMAX ROBUST ESTIMATION OF A LOCATION PARAMETER

Let z1, -+ ,z, be independent random variables with common density f(z — 6)
in a convex class F. Then the M-estimator 8 of a location parameter 6 is defined by
Huber (3] as a zero of ) 1 ¢(z; — -) with a suitable score function 3. The minimax
approach implies the determination of the least informative distribution density fy
minimizing Fisher information I(f) in the class F where

oo
o) fo=agminl(s), 1) = | (1)) 1(@)f(@)da,
followed by designing the optimum maximum likelihood estimator with the score
function
(2) Yo(z) = —fo(z)/ fol@).

Under rather general conditions (for details, see Huber [3], [4]), v/n(6 — 6) is
asymptotically normally distributed and the asymptotic variance V (¢, f) has the
saddle point (g, fo) with the corresponding minimax property

V (%o, f) < V(to, fo) < V(¥, fo).

The following conditions are assumed for the classes of distributions F:

oC

(3) f@) >0, f(-z)=f(x), f(z)de = 1.

—x
Depending on the additional restrictions upon a class F, different forms of the least
informative density fo and the corresponding score function 1y may appear.
There are many results on the least informative distributions in the different
classes of e-contaminated neighbourhoods of a given distribution (see Huber [3], {4];
Sacks and Ylvisaker {5]; Collins and Wiens [1]; Wiens [7]). The qualitatively other



ON THE MINIMAX ROBUST APPROACH TO THE TRUNCATION OF DISTRIBUTIONS 81

types of distribution classes with a bounded variance were considered by Vil’chevskiy
and Shevlyakov [6]. In the class

1
f:{f:/_lfdz‘21~ﬁ, 0<ﬂ<1}

of the approximately finite distributions (in other words, the distributions with a
bounded subrange, see Huber [4]), where | and [ are given parameters, the latter
characterizing the level of a prior uncertainty of a distribution, the least informative

density consists of the cosine-type and the erponential-type parts:
Ay cos2(Blm), lz| <1,
olle) = {Az exp(~Balal),  |a| > L.
The constants Ay, As, By and By are determined from the system of equations in-
cluding the norming condition, the characterizing restriction of the approximate

finiteness, and the transversality conditions inducing the smooth glueing at |z| = {
such that

=] 4
[ fo(z)dz =1, /lfo(a:) dr=1-1,

fol=0) = fo(I+0),  f'(l-0)=fo'(l+0).

The remarkable feature of this robust solution (and also others, see Huber [4]) is the
presence of the exponential “tails”: it is due to the fact that the extremals of the
basic variational problem are exponents. In the case of # = 0, approximately finite

7= o [yl

and the least informative density is of the form

o) = { cos®(rz/(20))/1,  |z| <1,

0, lz| > L.

distributions become finite

3. PROBLEM STATEMENT AND MAIN RESULT

A statistician usually has the more or less definite information about the central
part of a distribution and the rather vague considerations about the tails. Moreover,

most of distributions in applications seem to be finite but with the unknown domain
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of finiteness. According to these qualitative considerations, we now introduce the

following class F; of the truncated distributions

p(z), |z <4
(4) Fu=<f: flz) =< hiz), I < |z| < L;
0, || > L

with the side conditions and with the restriction on the central part of a distribution

1
(5) /_lf(w)dw=1—ﬂ, 0<B<1,

where p(z) is a given probability density in the central part; h(x) is an arbitrary
nonnegative symmetric function (the unknown tails); ! and L are arbitrary constants:
the latter L defines the domain of finiteness; the value of the parameter [ is given,
and, in this case, it is a measure of the uncertainty of our knowledge about the
central part of a distribution: 0 < # < 1, naturally small with 8 = 0.05 or 8 = 0.1.
We also assume fchat f(z) are continuously differentiable functions.

We suggest to determine all unknown characteristics of this distribution applying

Huber minimax approach and minimizing Fisher information.

Theorm. In the class Fi., the least informative density is of the form

p(z), lz] <
(6) fo(z) = { Acos®(B(|z| —z0)/2), I<l|z|<L;
0, |z| > L,

where the constants A, B,l and L are determined from the following system of equa-

tions

L l
/ fol@)de =1, / fo@)dz =1 B.
-L -1

Remark 1. We have all the restrictions of the class of approzimately finite distribu-
tions but the later additional boundary condition (the natural boundary condition)
providing the finiteness of Fisher information (0 < I(f) < 00).

Example 1. With the Gaussian p(z) = ¢(z) = (27)" /2 exp(~22/2) we have the

following relations:
A=¢()(1+tan%(w/2)), B=1/tan(w/2), z¢=1— (1/D)wtan(w/2),
l=8&"11-3/2), L=ux0+ (n/l)tan(w/2),
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where the value of the auxiliary parameter w = B(l — z¢) is determined from

[8 +28(1)i]!
mo(l)

and &(z) = (2m)"1/2 JZ . exp(—t?/2) dt. Minimum information is

w = 2arctan

l
I(fo) = / ¢(z)dz + AB*(L — 1) + ABsinw.
-1
With 8 = 0.1 we have the following numerical results:
w=2.297,A=0.6132,B = 0.7391,z9 = —1.463,1 = 1.645, L = 2.798, I(fo) = 1.285,

representing the reasonable thresholds of truncating at the level of “30”.

Example 2. With the uniform distribution

05, |z|<1;
Tr) =
P(a) 0, |z|>1

we have:

A=05 B=7/(26), zo=1, l=1-8, L=1+8, I(fo) = 72/(48).

Remark 2. In this case, the cosine-type tails regularize the discontinuous uniform
distribution providing the finiteness of Fisher information.

Proof of the Theorem. First, we elucidate the structure of the solution and then
prove its optimality. The variational problem with the side condition of norming is
reformulated by the use of the following change of variables f(z) = g%(z) > 0
o0
minimize J(g) = /

(o o]
¢ (z)*dz subject to / g*(x)dx = 1.

-0 -0
The Lagrange functional for this problem is given by

o0 o o]

L(g,)\) = / g'(ar:)2 dz + X (/ g% (z)dz — 1) .

-0 -

Then the Euler equation for it has the form
g”(:z:) - )\g(.’L') = 0’

and, respectively, its solutions of the cosine-type are the extremals in the class Fi,
(4) of the truncated distributions. The optimum solution of the original problem in
the class JFi; is the smooth “gluing” of the free cosine-type extremals and the given

density p(z). The parameters of “gluing” A, B, zo,l, and L are determined from the
conditions (3) and (5), continuity and differentiability of the solution at |z| = [, and
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from the natural boundary condition f’(L) = 0 at the free boundaries |z| = L (see
Gelfand and Fomin [2]).

We now check the optimality of the obtained solution. It is known (see Huber
[4]) that the density fy belonging to a convex class 5 minimizes Fisher information

if and only if
d
-1 >
[dt (ft):|t:0 = 0 )

where f; = (1 — t)fo + tf, and f is an arbitrary distribution density providing
0 < I(f) < co. This inequality can be rewritten as
o0
| en ) - ) do 2o
—00
where 1 (z) is the optimal score function (2). The cirect evaluation of the lefthand
side of (7) concludes the proof. O

4. FINAL REMARKS

First, we present a few additional considerations on the choice of the class Fi;.
The least informative density fo in the class of e-contaminated distributions (see
Huber {3]) has the known central part: fo(z) = (1 — €)p(z) and exponential tails,
but with other e-neighbourhoods of a known density p(z) the central part of fo may
be of a rather exotic shape differing much from p(z) (see Huber [4], Wiens [7]). So,
it seems more realistic to postulate the knowledge of a central zone of a distribution
and to attribute all uncertainty to distribution tails. We repeat once more that
the assumption of finiteness gives a more adequate distribution model within many
applications. In the class Fi;, it is no need in the assumption of strong unimodality
of p(z) (see Huber [3]) and its weakened variants (see Wiens [7]): p(z) can be of
an arbitrary form, for example, U-shaped. Certainly, symmetry is necessary. The
natural structure of the class F;; inherently corresponds to the expected form of fjy,
thus it gives the possibility to obtain a rather simple solution.

Second, we comment on the properties of the minimax M-estimator of location.
The optimal score function g provides the guaranteed level of accuracy of the
minimax estimator: V(¢g, f) < V(4o, fo) for all f € Fi and its robustness by
rejecting outliers in data at the threshold |z| = L. We indicate that the values

, of Fisher information with truncated distributions are larger than with the original
ones (see Example 1: I(¢) =1 < 1.285 = I(¢y;)). Moreover, the minimax estimators
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are superefficient: the integrals diverge in the expression for the asymptotic variance

V(%o, f) = [Yafdz/[[ ¥ fdz)? in such a way that V (¢, f) = 0 for f & Fir. Thus,
using 1y with large samples, we have highly precise estimates of location.

Finally, we note that the small size sample behaviour of the minimax estimators
is unknown, and the rule of rejection of outliers can be based on the thresholds !
and L.
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