NOTES ON THE MCSHANE-STIELTJES INTEGRABILITY

BYONG IN SEUNG

ABSTRACT. In this paper, we define the McShane-Stieltjes integral for Banach-valued functions, and will investigate some of its properties and comparison with the Pettis integral.

1. Introduction

In 1990, Gordon [7] introduced the concepts of the McShane integral of Banach-valued functions.

Fremlin and Mendoza [5] improved some results of Gordon as follows: A function $\phi:[0,1]\to X$ is McShane integrable whenever a tagged partition P is sub δ on [0,1] if and only if it is Pettis integrable.

We are concerned with the McShane-Stieltjes integral for Banach-valued functions which is a generalization of the McShane-Stieltjes integral for real-valued functions.

In this paper, for Banach-valued functions we shall introduce the McShane-Stieltjes integral that is encouraged naturally by the idea of Riemann-Stieltjes or Lebesgue-Stieltjes integral. Also, we will investigate some properties of McShane-Stieltjes integrability and comparison with the Pettis integral.

2. Preliminaries

Throughout this paper, (Ω, Σ, μ) is a finite measure space and X, Y will denote Banach spaces with dual X^*, Y^* and unless otherwise stated, α is an increasing function on [0, 1] into \mathbb{R} .

Received by the editors March 20, 2001.

 $^{2000\} Mathematics\ Subject\ Classification.\ 28B05,\ 46G10.$

Key words and phrases. McShane integral, McShane-Stieltjes integral, McShane-Stieltjes integrability.

This paper is supported by Kyonggi University Research Grant in 2000.

Definition 2.1 (Diestel and Uhl [1]). A function $f: \Omega \to X$ is called *simple* if there exist $x_1, x_2, \dots, x_n \in X$ and $E_1, E_2, \dots, E_n \in \Sigma$ such that $f = \sum_{i=1}^n x_i \chi_{E_i}$, where $\chi_{E_i}(\omega) = 1$ if $\omega \in E_i$ and $\chi_{E_i}(\omega) = 0$ if $\omega \notin E_i$.

A function $f: \Omega \to X$ is called μ -measurable if there exists a sequence of simple functions $\{f_n\}$ with $\lim_n ||f_n - f|| = 0$ μ -almost everywhere.

A function $f: \Omega \to X$ is called weakly μ -measurable if for each $x^* \in X^*$ the numerical function x^*f is μ -measurable. More generally, if $\Gamma \subseteq X^*$ and x^*f is measurable for each $x^* \in \Gamma$, then f is called Γ -measurable. If $f: \Omega \to X^*$ is X-measurable (when X is identified with its image under the natural imbedding of X into X^{**}), then f is called weak*-measurable.

Theorem 2.2 (Pettis's Measurability Theorem). A function $f: \Omega \to X$ is μ -measurable if and only if

- (i) f is μ -essentially separably valued, i.e., there exists $E \in \Sigma$ with $\mu(E) = 0$ and such that $f(\Omega \setminus E)$ is a (norm) separable subset of X, and
- (ii) f is weakly μ -measurable.

Definition 2.3. A μ -measurable function $f: \Omega \to X$ is called *Bochner integrable* if there exists a sequence of simple functions $\{f_n\}$ such that

$$\lim_{n} \int_{\Omega} \|f_n - f\| = 0.$$

In this case, $\int_E f d\mu$ is defined for each $E \in \Sigma$ by

$$\int_E f d\mu = \lim_n \int_E f_n d\mu,$$

where $\int_E f_n d\mu$ is defined in the obvious way.

Definition 2.4. If f is a weakly μ -measurable X-valued function on Ω such that $x^*f \in L_1(\mu)$ for all $x^* \in X^*$, then f is called *Dunford integrable*. The Dunford integral over $E \in \Sigma$ is defined by the element x_E^{**} of X^{**} such that $x_E^{**}(x^*) = \int_E x^*f d\mu$ for all $x^* \in X^*$, and we write $x_E^{**} = (D)$ - $\int_E f d\mu$.

In the case that (D)- $\int_E f d\mu \in X$ for each $E \in \Sigma$, then f is called *Pettis integrable* and we write (P)- $\int_E f d\mu$ instead of (D)- $\int_E f d\mu$ to denote the Pettis integral of f over $E \in \Sigma$.

The above definitions and theorem are given in Diestel and Uhl [1].

Definition 2.5 (Gordon [7]). Let $\delta(\cdot)$ be a positive function defined on the interval [0,1]. A tagged interval (x,[a,b]) consists of an interval $[a,b] \subset [0,1]$ and a point x in

[0,1]. This x may not be a point in [a,b]. The tagged interval (x,[a,b]) is subordinate to δ if $[a,b] \subset (x-\delta(x),x+\delta(x))$. The capital letter P will be used to denote a finite collection of non-overlapping tagged intervals. Let $P = \{(x_i,[a_i,b_i]): 1 \leq i \leq n\}$ be such a collection in [0,1]. We adopt the following terminology:

- (a) The points $\{x_i\}$ are called tags of P and the intervals $\{[a_i, b_i]\}$ are called intervals of P.
- (b) If $(x_i, [a_i, b_i])$ is subordinate to δ for each i, then we write P is sub δ .
- (c) If P is subordinate to δ and $[0,1] = \bigcup_{i=1}^{n} [a_i,b_i]$, then P is called a tagged partition (or McShane partition) of [0,1].
- (d) If P is a tagged partition of [0,1] and if P is sub δ , then we write P is sub δ on [0,1].
- (e) If $f:[0,1] \to X$, then $f(P) = \sum_{i=1}^{n} f(x_i)(b_i a_i)$.
- (f) If F is defined on the intervals of [0, 1], then $F(P) = \sum_{i=1}^{n} F([a_i, b_i])$.
- (g) We will write $\mu(P)$ for $\sum_{i=1}^{n} (b_i a_i)$ and $\int_P f$ for $\sum_{i=1}^{n} \int_{a_i}^{b_i} f$.

Definition 2.6 (Gordon [7]). The function $f:[0,1] \to X$ is $McShane\ integrable$ on [0,1] if there exists a vector z in X with the following property: for each $\epsilon > 0$ there exists a positive function δ on [0,1] such that $||f(P) - z|| < \epsilon$ whenever P is sub δ on [0,1], and z is denoted by

$$(M)$$
- $\int_0^1 f$ or (M) - $\int_0^1 f(x)dx$.

The function f is McShane integrable on the set $E \subset [0,1]$ if the function $f\chi_E$ is McShane integrable on [0,1].

We now present the definition of the McShane-Stieltjes integral for Banach-valued functions.

Let $f:[0,1] \to X$ and let α be an increasing function on [0,1]. Then we will use the following notation:

$$f_{\alpha}(P) = \sum_{i=1}^{n} f(x_i) [\alpha(b_i) - \alpha(a_i)]$$

where a tagged partition $P = \{(x_i, [a_i, b_i] : 1 \le i \le n\} \text{ of } [0, 1] \text{ is sub } \delta \text{ on } [0, 1].$

Definition 2.7. A function $f:[0,1] \to X$ is McShane-Stieltjes integrable with respect to α on [0,1] if there exists a vector z in X with the following property: for each $\epsilon > 0$ there exists a positive function δ on [0,1] such that $||f_{\alpha}(P) - z|| < \epsilon$ whenever a tagged partition P is sub δ on [0,1].

A function f is McShane-Stieltjes integrable on a measurable set $E \subset [0,1]$ with respect to α if $f\chi_E$ is a McShane-Stieltjes integrable function with respect to α on [0,1]. We note that when such a number z in X exists, it is uniquely determined and is denoted by

(MS)- $\int_0^1 f(x)d\alpha(x)$ or (MS)- $\int_0^1 fd\alpha$

and we also say that McShane-Stieltjes integral (MS)- $\int_0^1 f d\alpha$ with respect to α on [0,1] exists. The function f and α are referred to as the integrand function and integrator function, respectively.

And otherwise, all notions and notations used in this paper, unless mentioned, can be found in [1], [2], and [7].

3. Properties of the McShane-Stieltjes integral

The next propositions and theorems record some of the basic computational properties of McShane-Stieltjes integral for Banach-valued functions and the proofs of these facts are virtually identical to the proofs for real-valued functions, and sometimes the concept of norm in Banach space will be required.

Proposition 3.1. Let α be an increasing function on [0,1]. A function $f:[0,1] \to X$ is a McShane-Stieltjes integrable with respect to α on [0,1] if and only if for each $\epsilon > 0$ there exists a positive function δ on [0,1] such that $||f_{\alpha}(P_1) - f_{\alpha}(P_2)|| < \epsilon$ whenever P_1 and P_2 are sub δ on [0,1].

Proof. Suppose that f is a McShane-Stieltjes integrable function with respect to α on [0,1]. Then there exists a vector z in X with the following property: for each $\epsilon > 0$, there exists a positive function δ on [0,1] such that

$$||f_{\alpha}(P) - z|| < \frac{\epsilon}{2}$$

whenever a tagged partition P is sub δ on [0,1]. If P_1 and P_2 are sub δ on [0,1], then

$$||f_{\alpha}(P_1)-z||<rac{\epsilon}{2} \ \ ext{and} \ \ ||f_{\alpha}(P_2)-z||<rac{\epsilon}{2}.$$

Hence, we get

$$||f_{\alpha}(P_{1}) - f_{\alpha}(P_{2})|| = ||(f_{\alpha}(P_{1}) - z) + (z - f_{\alpha}(P_{2}))||$$

$$\leq ||f_{\alpha}(P_{1}) - z|| + ||z - f_{\alpha}(P_{2})||$$

$$< \epsilon.$$

Conversely, suppose that for each $\epsilon > 0$ there exists a positive function δ on [0,1] such that $||f_{\alpha}(P_1) - f_{\alpha}(P_2)|| < \epsilon$ whenever P_1 and P_2 are sub δ on [0,1]. Then for each positive integer n, there exists a positive function δ'_n on [0,1] such that

$$||f_{\alpha}(P') - f_{\alpha}(P'')|| < \frac{1}{n}$$

whenever each tagged partition P' and P'' are sub δ'_n on [0,1].

If we take $\delta_n = \min\{\delta'_1, \delta'_2, \dots, \delta'_n\}$ for $n = 1, 2, 3, \dots$, then δ_n is a positive function on [0, 1] for $n = 1, 2, 3, \dots$ and

$$||f_{\alpha}(P') - f_{\alpha}(P'')|| < \frac{1}{n}$$

whenever each P' and P'' are sub δ_n on [0,1].

For each positive integer n, choose a tagged partition P_n which is sub δ_n on [0,1]. For each $\epsilon > 0$ there exists a positive integer $N \in \mathbb{N}$ with $\frac{1}{N} < \epsilon$. If m, n > N, then

$$||f_{\alpha}(P_m) - f_{\alpha}(P_n)|| < \frac{1}{N}$$

since P_m and P_n are sub δ_N on [0,1]. Thus, a sequence $(f_\alpha(P_n))$ is Cauchy sequence in X. Since X is a Banach space, the sequence $(f_\alpha(P_n))$ converges to any one vector in X. Let z be the limit of this sequence and let $\epsilon > 0$. Then there exists a positive integer N_1 with $\frac{1}{N_1} < \frac{\epsilon}{2}$ such that if $N > N_1$, then

$$\|f_{\alpha}(P_N)-z\|<\frac{1}{N_1}<\frac{\epsilon}{2}.$$

Choose a positive integer $N \in \mathbb{N}$ such that $N > N_1$ and $\frac{1}{N} < \frac{\epsilon}{2}$. Then

$$||f_{\alpha}(P) - z|| \le ||f_{\alpha}(P) - f_{\alpha}(P_N)|| + ||f_{\alpha}(P_N) - z|| < \frac{1}{N} + \frac{\epsilon}{2} < \epsilon$$

where P and P_N are sub δ_N on [0,1]. Therefore f is a McShane-Stieltjes integrable with respect to α on [0,1].

Proposition 3.2. Let α be an increasing function on [0,1]. If $f:[0,1] \to X$ is a McShane-Stieltjes integrable with respect to α on [0,1], then f is a McShane-Stieltjes integrable with respect to α on every subinterval of [0,1].

Proof. Let [a,b] be any subinterval of [0,1] and let $\epsilon > 0$. Then, there exists a positive function δ_1 such that $||f_{\alpha}(P_1) - f_{\alpha}(P_2)|| < \epsilon$ whenever P_1 and P_2 are sub δ_1 on [0,1] by Proposition 3.1.

Let δ be the restriction of δ_1 to subinterval [a,b] of [0,1]. Then δ be a positive function on [a,b]. Also, let P_1 and P_2 be any tagged partitions of [a,b] which are

sub δ on [a, b]. Choose a tagged partition P_a of [0, a] which is sub δ_1 , and choose a tagged partition P_b of [b, 1] which is sub δ_1 . Then two tagged partitions

$$P' = P_a \cup P_1 \cup P_b$$
 and $P'' = P_a \cup P_2 \cup P_b$

are sub δ_1 on [0,1]. Hence

$$||f_{\alpha}(P_1) - f_{\alpha}(P_2)|| = ||f_{\alpha}(P') - f_{\alpha}(P'')|| < \epsilon.$$

By Proposition 3.1, f is McShane-Stieltjes integrable with respect to α on [0,1]. That is, f is McShane-Stieltjes integrable with respect to α on every subinterval of [0,1].

It is easy to prove the following fact from the above two properties.

Proposition 3.3. Let $f:[0,1] \to X$ and let $t \in (0,1)$. If f is a McShane-Stieltjes integrable with respect to α on each of the interval [0,t] and [t,1], then f is a McShane-Stieltjes integrable with respect to α on [0,1] and

$$(MS)$$
- $\int_0^1 f d\alpha = (MS)$ - $\int_0^t f d\alpha + (MS)$ - $\int_t^1 f d\alpha$.

Moreover, the Propositions above give, mutatis mutandis, the following remarkable property:

Proposition 3.4. Let f and let g be McShane-Stieltjes integrable with respect to α on [0,1] into X. Then for any real numbers s and t, the function sf + tg is McShane-Stieltjes integrable with respect to α on [0,1] and

$$(MS)$$
- $\int_0^1 (sf+tg)d\alpha = s\Big[(MS)$ - $\int_0^1 fd\alpha\Big] + t\Big[(MS)$ - $\int_0^1 gd\alpha\Big].$

The following theorem shows the linearity of the McShane-Stieltjes integrator functions.

Theorem 3.5. Let α and β be increasing functions on [0,1] and let c_1 and c_2 be nonnegative real numbers. If $f:[0,1] \to X$ is a McShane-Stieltjes integrable with respect to α and β respectively, then

$$(MS)$$
- $\int_0^1 fd(c_1 lpha + c_2 eta) = c_1 \Big[(MS)$ - $\int_0^1 fdlpha \Big] + c_2 \Big[(MS)$ - $\int_0^1 fdeta \Big].$

Proof. We first show that (MS)- $\int_0^1 f d(\alpha+\beta) = (MS)$ - $\int_0^1 f d\alpha + (MS)$ - $\int_0^1 f d\beta$ and next show that (MS)- $\int_0^1 f d(k\alpha) = k[(MS)$ - $\int_0^1 f d\alpha]$ for a negative real number k.

First, suppose that $f:[0,1] \to X$ is a McShane-Stieltjes integrable with respect to both α and β . Then for each $\epsilon > 0$, there exists a positive function δ_1 on [0,1] such that $\|f_{\alpha}(P_1) - (MS) - \int_0^1 f d\alpha\| < \frac{\epsilon}{2}$ whenever a tagged partition P_1 on [0,1] is sub δ_1 , and a positive function δ_2 on [0,1] such that $\|f_{\beta}(P_2) - (MS) - \int_0^1 f d\beta\| < \frac{\epsilon}{2}$ whenever a tagged partition P_2 of [0,1] is sub δ_2 .

Choose a tagged partition $P = \{(x_i, [a_i, b_i]) : 1 \le i \le n\}$ of [0, 1] consisting of elements that is the intersection of every element of P_1 and P_2 .

Let $\delta(x) = \min\{\delta_1(x), \delta_2(x)\}$ for x in [0, 1]. Then δ is a positive function on [0, 1] and also P is sub δ on [0, 1]. Thus the following properties hold: for given $\epsilon > 0$,

$$\left\|f_{lpha}(P)-(MS) ext{-}\int_{0}^{1}fdlpha
ight\|<rac{\epsilon}{2}$$

whenever a tagged partition P is sub δ on [0,1] and

$$\left\|f_{eta}(P)-(MS)-\int_{0}^{1}fdeta
ight\|<rac{\epsilon}{2}$$

whenever a tagged partition P is sub δ on [0,1]. Hence,

$$\begin{aligned} & \left\| f_{\alpha+\beta}(P) - \left[(MS) - \int_{0}^{1} f d\alpha + (MS) - \int_{0}^{1} f d\beta \right] \right\| \\ & = \left\| \sum_{i=1}^{n} f(x_{i}) \left[(\alpha + \beta)(b_{i}) - (\alpha + \beta)(a_{i}) \right] - \left[(MS) - \int_{0}^{1} f d\alpha + (MS) - \int_{0}^{1} f d\beta \right] \right\| \\ & = \left\| \left[\sum_{i=1}^{n} f(x_{i}) \left[\alpha(b_{i}) - \alpha(a_{i}) \right] + \sum_{i=1}^{n} f(x_{i}) \left[\beta(b_{i}) - \beta(a_{i}) \right] \right] - \left[(MS) - \int_{0}^{1} f d\alpha + (MS) - \int_{0}^{1} f d\beta \right] \right\| \\ & \leq \left\| f_{\alpha}(P) - (MS) - \int_{0}^{1} f d\alpha \right\| + \left\| f_{\beta}(P) - (MS) - \int_{0}^{1} f d\beta \right\| \\ & \leq \epsilon \end{aligned}$$

whenever a tagged partition $P = \{(x_i, [a_i, b_i]) : 1 \le i \le n\}$ is sub δ on [0, 1]. Thus, we get

$$(MS)-\int_0^1 f d(\alpha + \beta) = (MS)-\int_0^1 f d\alpha + (MS)-\int_0^1 f d\beta.$$

Second, suppose that f is a McShane-Stieltjes integrable with respect to α on [0,1] and k is a nonnegative real number.

Case 1: k = 0. It is trivial.

Case 2: k > 0. Given $\epsilon > 0$, there exists a positive function δ on [0,1] such that

$$\left\| f_{\alpha}(P) - (MS) - \int_{0}^{1} f d\alpha \right\| < \frac{\epsilon}{k}$$

whenever a tagged partition P is sub δ on [0,1]. Thus we obtain

$$\begin{aligned} & \left\| f_{(k\alpha)}(P) - k \left[(MS) - \int_0^1 f d\alpha \right] \right\| \\ & = \left\| \sum_{i=1}^n f(x_i) \left[k\alpha(b_i) - k\alpha(a_i) \right] - k \left[(MS) - \int_0^1 f d\alpha \right] \right\| \\ & = \left\| k \sum_{i=1}^n f(x_i) \left[\alpha(b_i) - \alpha(a_i) \right] - k \left[(MS) - \int_0^1 f d\alpha \right] \right\| \\ & = \left\| k f_{\alpha}(P) - k \left[(MS) - \int_0^1 f d\alpha \right] \right\| \\ & < \epsilon \end{aligned}$$

whenever a tagged partition P is sub δ on [0,1]. Hence,

$$(MS)$$
- $\int_0^1 f d(k\alpha) = k \left[(MS) - \int_0^1 f d\alpha \right].$

Consequently, we have the following result as required:

$$(MS)$$
- $\int_0^1 fd(c_1\alpha+c_2\beta) = c_1\Big[(MS)$ - $\int_0^1 fd\alpha\Big] + c_2\Big[(MS)$ - $\int_0^1 fd\beta\Big].$

Theorem 3.6. If $f:[0,1] \to X$ is a McShane-Stieltjes integrable with respect to α and if $T:X \to Y$ is a bounded linear operator, then the composition $T \circ f:[0,1] \to Y$ is a McShane-Stieltjes integrable with respect to α and

$$T[(MS)-\int_0^1 f d\alpha] = (MS)-\int_0^1 T \circ f d\alpha$$

Proof. There exists $M \in \mathbb{R}^+$ such that $||T|| \leq M$ since $T: X \to Y$ is a bounded linear operator. Now let (MS)- $\int_0^1 f d\alpha = z$. Then, for given $\epsilon > 0$ there exists a positive function δ on [0,1] such that

$$\left\|z - \sum_{i=1}^{n} f(x_i)[\alpha(b_i) - \alpha(a_i)]\right\| < \frac{\epsilon}{M}$$

whenever a tagged partition $\{(x_i, [a_i, b_i]) : 1 \le i \le n\}$ is sub δ on [0, 1]. Thus,

$$\begin{aligned} & \left\| T[(MS) - \int_0^1 f d\alpha] - (MS) - \int_0^1 (T \circ f) d\alpha \right\| \\ & = \left\| Tz - \sum_{i=1}^n (T \circ f)(x_i) [\alpha(b_i) - \alpha(a_i)] \right\| \\ & = \left\| T \cdot \left[z - \sum_{i=1}^n f(x_i) [\alpha(b_i) - \alpha(a_i)] \right\| \\ & = \left\| T \right\| \cdot \left\| z - \sum_{i=1}^n f(x_i) [\alpha(b_i) - \alpha(a_i)] \right\| \\ & < M \cdot \frac{\epsilon}{M} = \epsilon \end{aligned}$$

whenever also $\{(x_i, [a_i, b_i]) : 1 \le i \le n\}$ is sub δ on [0, 1]. Therefore, $T \circ f : [0, 1] \to Y$ is a McShane-Stieltjes integrable operator with respect to α and

$$(MS)$$
- $\int_0^1 T \circ f d\alpha = T(z) = T\Big[(MS)$ - $\int_0^1 f d\alpha\Big].$

Corollary 3.7. If f is a McShane-Stieltjes integrable with respect to α on [0,1] into X and for each t in [0,1], then x^*f is a McShane-Stieltjes integrable with respect to α on [0,1] and for each x^* in X^*

$$(MS)$$
- $\int_0^t x^* f d\alpha = x^* [(MS)$ - $\int_0^t f d\alpha].$

Proof. If $x^* = 0$, then the result follows immediately. Now we consider the case that x^* is not zero. Since f is a McShane-Stieltjes integrable with respect to α on [0,1], there exists a positive function δ on [0,1] such that for each $\epsilon > 0$,

$$\left\| f_{\alpha}(P) - (MS) - \int_{0}^{1} f d\alpha \right\| < \frac{\epsilon}{\|x^{*}\|},$$

whenever a tagged partition P is sub δ on [0,1]. And then,

$$\left\| (x^*f)_{\alpha}(P) - x^* \left[(MS) - \int_0^1 f d\alpha \right] \right\|$$

$$= \left\| \sum_{i=1}^n (x^*f)(x_i) [\alpha(b_i) - \alpha(a_i)] - x^* \left[(MS) - \int_0^1 f d\alpha \right] \right\|$$

$$= \left\| x^* \left[\sum_{i=1}^n f(x_i) [\alpha(b_i) - \alpha(a_i)] - (MS) - \int_0^1 f d\alpha \right] \right\|$$

$$= \|x^*\| \cdot \left\| f_{\alpha}(P) - (MS) - \int_0^1 f d\alpha \right\|$$

$$< \|x^*\| \cdot \frac{\epsilon}{\|x^*\|} = \epsilon$$

whenever also $P = \{(x_i, [a_i, b_i]) : 1 \leq i \leq n\}$ is sub δ on [0, 1]. Hence, x^*f is a McShane-Stieltjes integrable with respect to α on [0, 1] and for each $x^* \in X^*$,

$$(MS)-\int_0^1 (x^*f)d\alpha = x^*\left[(MS)-\int_0^1 fd\alpha\right].$$

Moreover, for each $t \in [0, 1]$, f is a McShane-Stieltjes integrable with respect to α on [0, t] by Proposition 3.2.

Considering the above argument carefully, x^*f is a McShane-Stieltjes integrable with respect to α on [0,t] and

$$(MS)-\int_0^t x^*fd\alpha = x^*\Big[(MS)-\int_0^t fd\alpha\Big]$$

for $x^* \in X^*$.

4. Comparison with the Pettis integral

We now proceed to prove that every measurable and Pettis integrable function is McShane-Stieltjes integrable.

Theorem 4.1. Let $f:[0,1] \to X$ be McShane-Stieltjes integrable with respect to α on [0,1]. If f=g almost everywhere on [0,1], then g is McShane-Stieltjes integrable with respect to α on [0,1] and (MS)- $\int_0^1 f d\alpha = (MS)$ - $\int_0^1 g \ d\alpha$.

Proof. It is sufficient to prove that if $f = \theta$ (the zero of X) almost everywhere on [0,1] then f is McShane-Stieltjes integrable with respect to α on [0,1] and (MS)- $\int_0^1 f d\alpha = \theta$. Since ||f|| = 0 a.e. on [0,1], the function ||f|| is McShane-Stieltjes integrable with respect to α on [0,1] and it is Lebesgue integrable since $\int_0^1 ||f|| = 0$. Let $\epsilon > 0$ and choose a positive function δ on [0,1] such that $||f||_{\alpha}(P) < \epsilon$ whenever P is sub δ on [0,1]. Let P be sub δ on [0,1] and compute $||f_{\alpha}(P) - \theta|| = ||f_{\alpha}(P)|| \le ||f||_{\alpha}(P) < \epsilon$. This shows that f is McShane-Stieltjes integrable with respect to α on [0,1] and (MS)- $\int_0^1 f d\alpha = \theta$.

The next definition and the proof of the theorems can be found in Gordon [7]. We shall have necessarily any modifications about them.

Definition 4.2. Let $\{f_n\}$ be a collection of McShane-Stieltjes integrable functions with respect to α on [0,1]. The collection $\{f_n\}$ is uniformly McShane-Stieltjes integrable with respect to α on [0,1] if there exists a set E in [0,1] such that $\mu(E) = 1 - 0 = 1$ and for each $\epsilon > 0$ there exists a positive function δ on [0,1] such that

$$\left\| (f_n)_{\alpha} \chi_E(P) - (MS) - \int_0^1 f_n d\alpha \right\| < \epsilon$$

for all n and whenever P is sub δ on [0, 1].

Theorem 4.3. Let $f_n:[0,1] \to X$ be a McShane-Stieltjes integrable function with respect to α on [0,1] for each positive integer n. If $f_n \to f$ uniformly on [0,1], then f is McShane-Stieltjes integrable with respect to α on [0,1] and

$$(MS)-\int_0^1 f d\alpha = \lim_{n\to\infty} (MS)-\int_0^1 f_n d\alpha.$$

Theorem 4.4. Let $\{E_n\}$ be a sequence of disjoint measurable sets in [0,1], let $\{x_n\}$ be a sequence in X, and let $f:[0,1] \to X$ be defined by $f(t) = \sum_n x_n \chi_{E_n}(t)$.

If the series $\sum_n \mu(E_n) x_n$ is unconditionally convergent, then the function f is McShane-Stieltjes integrable with respect to α on [0,1] and

$$(MS)-\int_0^1 f d\alpha = \sum_n \mu(E_n) x_n [\alpha(b_i) - \alpha(a_i)].$$

Now we are ready to verify the following two theorems that will be used to prove Theorem 4.9.

Theorem 4.5. If $f:[0,1] \to X$ is Bochner integrable on [0,1], then f is McShane-Stieltjes integrable with respect to α on [0,1].

Proof. Since f is measurable, there exist $E \subset [0,1]$ with $\mu(E) = 1 - 0 = 1$ and a sequence $\{f_n\}$ of countably-valued functions such that for each n the inequality $\|f_n(t) - f\chi_E(t)\| \leq \frac{1}{n}$ holds for all t in [0,1]. It is clear that each f_n is Bochner integrable on [0,1]. For each n, let $f_n = \sum_n x_k^n \chi_{E_k^n}$ where the sets $\{E_k^n : k \geq 1\}$ are disjoint and measurable. The series $\sum_k \mu(E_k^n) x_k^n$ is absolutely convergent and hence unconditionally convergent for each n. By Theorem 4.4, each of the functions f_n is McShane-Stieltjes integrable with respect to α on [0,1].

Since $f\chi_E$ is the uniform limit of $\{f_n\}$ on [0,1], the function $f\chi_E$ is McShane-Stieltjes integrable with respect to α on [0,1] by Theorem 4.3. And by Theorem 4.1 the function f is McShane-Stieltjes integrable with respect to α on [0,1].

Theorem 4.6. Let $f:[0,1] \to X$ be measurable. If f is Pettis integrable on [0,1], then f is McShane-Stieltjes integrable with respect to α on [0,1].

Proof. Since f is measurable, there exist $E \subset [0,1]$ with $\mu(E) = 1-0=0$ and a countably-valued function $g:[0,1] \to X$ such that $\|g(t) - f\chi_E(t)\| \le 1$ for all t in [0,1]. It is easy to see that $g - f\chi_E$ is Bochner integrable on [0,1] and that g is Pettis integrable on [0,1]. By Theorem 4.5 the function $g - f\chi_E$ is McShane-Stieltjes integrable with respect to α on [0,1]. Let $g = \sum_n x_n \chi_{E_n}$ where the E_n 's are disjoint, measurable sets in [0,1]. Since g is Pettis integrable on [0,1], every subseries of $\sum_n \mu(E_n)x_n$ is weakly convergent. By a theorem of Orlicz and Pettis (cf. Diestel and Uhl [1, p. 22]), the series $\sum_n \mu(E_n)x_n$ is unconditionally convergent. By Theorem 4.4, the function g is McShane-Stieltjes integrable with respect to α on [0,1], and it follows that $f\chi_E = g - (g - f\chi_E)$ is McShane-Stieltjes integrable with respect to α on [0,1]. By Theorem 4.1, the function f is McShane-Stieltjes integrable with respect to α on [0,1].

Theorem 4.7. Suppose that X contains no copy of c_0 and let $f:[0,1] \to X$ be Dunford integrable on [0,1]. If $\int_I f \in X$ for every interval $I \subset [0,1]$, then f is Pettis integrable on [0,1].

Proof. The proof is a consequence of the Bessaga-Pelczński characterization of Banach spaces that do not contain a copy of c_0 (cf. Diestel and Uhl [1, p. 22]).

From the fact that every McShane integrable function is Dunford integrable and X-valued on intervals, we obtain the corollary below:

Corollary 4.8. Suppose that X contains no copy of c_0 . If $f:[0,1] \to X$ is McShane-Stieltjes integrable with respect to α on [0,1], then f is Pettis integrable on [0,1].

Combining Theorem 4.6 and Corollary 4.8, we have the important following result:

Theorem 4.9. Suppose that X is separable and contains no copy of c_0 . A function $f:[0,1] \to X$ is McShane-Stieltjes integrable with respect to α on [0,1] if and only if f is Pettis integrable on [0,1].

Proof. Suppose that X is separable and contains no copy of c_0 . If $f:[0,1] \to X$ is McShane-Stieltjes integrable with respect to α on [0,1], then f is Pettis integrable on [0,1] by Corollary 4.8.

Conversely, if $f:[0,1] \to X$ is Pettis integrable on [0,1], then f is measurable by Theorem 2.2. Therefore f is McShane-Stieltjes integrable with respect to α on [0,1] by Theorem 4.6.

REFERENCES

- 1. J. Diestel and J. J. Uhl. Jr.: *Vector measure*. With a foreword by B. J. Pettis. Math. Surveys, No. 15. Amer. Math. Soc., Providence, R. I., 1977. MR **56**#12216
- N. Dunford and J. J. Schwartz: Linear Operators, I. General Theory. With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, 7. Interscience, New York, 1958. MR 22#8302
- 3. D. H. Fremlin: The Henstock and McShane integrals of vector-valued functions. *Illinois J. Math.* **38** (1994), no. 3, 471–479. MR **95d**:28015
- The generalized McShane integral. Illinois J. Math. 39 (1995), no. 1, 39-67.
 MR 95j:28008
- 5. D. H. Fremlin and J. Mendoza: On the integration of vector-valued functions. *Illinois J. Math.* 38 (1994), no. 1, 127–147. MR 94k:46083
- 6. R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integral. Studia Math. 92 (1989), no. 1, 73-91. MR 90b:28011
- 7. _____: The McShane integral of Banach-valued functions. *Illinois J. Math.* **34** (1990), no. 3, 557–567. MR **91m**:26013
- 8. _____: The integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, 4. Amer. Math. Soc., Providence, R. I., 1994. MR 95m:26010
- 9. R. M. McLeod: The generalized Riemann integral. Carus Mathematical Monographs, 20. Mathematical Association of America, Washington, D. C., 1980. MR 82h;26015
- E. J. McShane: Unified integration. Pure and Applied Mathematics, 107. Academic Press, San Diego, 1983. MR 86c:28002
- J. M. Park and D. H. Lee: The Denjoy extension of the McShane integral. Bull. Korean Math. Soc. 33 (1996), no. 3, 411-417. MR 97i:28008

DEPARTMENT OF MATHEMATICS, KYONGGI UNIVERSITY, SAN 94-6 IUI-DONG, PALDAL-GU, SUWON, GYEONGGI-DO 442-760, KOREA

E-mail address: biseung@kuic.kyonggi.ac.kr