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LORENTZIAN ALMOST PARACONTACT MANIFOLDS
AND THEIR SUBMANIFOLDS

MUKUT MANI TRIPATHI AND UDAY CHAND DE

ABSTRACT. This is a survey article on almost Lorentzian paracontact manifolds.
The study of Lorentzian almost paracontact manifolds was initiated by Matsumoto
[On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989),
151-156]. Later on several authors studied Lorentzian almost paracontact manifolds
and their different classes, viz. LP-Sasakian and LSP-Sasakian manifolds. Differ-
ent types of submanifolds, for example invariant, semi-invariant and almost semi-
invariant, of Lorentzian almost paracontact manifold have been studied. Here, we
present a brief survey of results on Lorentzian almost paracontact manifolds with
their different classes and their different kind of submanifolds.

1. INTRODUCTION

The study of Lorentzian almost paracontact manifolds was initiated by Mat-
sumoto [11]. Later on several authors studied Lorentzian almost paracontact man-
ifolds and their different classes, viz. LP-Sasakian and LSP-Sasakian manifolds (cf.
(5], [12], [13], [14], {15}, [19], [20], [27)). Different types of submanifolds, for example
invariant, semi-invariant and almost semi-invariant, of Lorentzian almost paracon-
tact manifold have been studied in (3], [4], [6], [7], [18], [21], [22], [24], [29] and
[30].

Here, we present a brief survey of results on Lorentzian almost paracontact man-
ifolds with their different classes and their different kind of submanifolds. In Sec-
tion 2, the definition of Lorentzian almost paracontact manifolds is given, while in
Section 3 different classes of Lorentzian almost paracontact manifolds are defined.
In Section 4, some example(s) and their construction is given. In Section 5, sec-
tional curvature in an LP-Sasakian manifold is discussed. Results concerned with
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infinitesimal CL-transformation in an LP-Sasakian manifold are presented in Sec-
tion 6. Some CL-relations are given in Section 7. In Section 8, two results on null
structure conformal vector fields on an LP-Sasakian manifold are collected, while
some results on £-null geodesic gradient vector fields on an LP-Sasakian manifold are
given in Section 9. Section 10 contains two properties of LP-Sasakian manifolds with
n-parallel Ricci tensor. In Section 11, results on 7-Einstein LP-Sasakian manifolds
are compiled. Some transformations in LP-Sasakian manifolds are subject matter of
Section 12. Section 13 deals with 3-dimensional LP-Sasakian manifolds. Later part
gives a brief account of results, on submanifolds of Lorentzian almost paracontact
manifolds and their different classes, so far. Some basic formulas on submanifolds of
Lorentzian almost paracontact manifolds are given in Section 14. Different types of
submanifolds are discussed in Section 15. Some results on submanifolds of Lorentzian
s-paracontact manifold are given in Section 16. Certain integrability conditions for
natural distributions on submanifolds of Lorentzian almost paracontact manifolds
and their different classes are given in Section 17. Totally umbilical and totally
geodesic submanifolds are dealt in Section 18. In Section 19, non-existence of an
anti-invariant distribution on certain submanifold of an LP-Sasakian manifold and
non-existence of proper mixed foliated semi-invariant submanifolds of a Lorentzian
s-paracontact manifold are demonstrated.

2. LORENTZIAN ALMOST PARACONTACT MANIFOLDS

Let an n-dimensional smooth connected paracompact Hausdorff manifold M be
equipped with a Lorentzian metric g, that is, g is a smooth symmetric tensor field
of type (0,2) such that at every point p € M, the tensor g, : T,M x T,M —» Ris a
non-degenerate innerproduct of signature (—,+,-- -, +), where T,,]VI is the tangent
space of M at p and R is the real line. In other words, a matrix representation of
gp has one eigenvalue negative and all other eigenvalues positive. Then M is called
a Lorentzian manifold. A non-zero vector X, € TPJVI is known to be spacelike, null,

non-spacelike or timelike if it satisfies
gp (Xp, Xp) >0, =0, <0 or <0

respectively.
Let M be an n-dimensional differentiable manifold equipped with a triple (¢, £,7),
where ¢ is a (1,1) tensor field, £ is a vector field, 7 is a 1-form on M such that (cf.
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Matsumoto {11})

(2) P =I+1Q¢,

where I denotes the identity map of TpM and the symbol ® is the tensor product.

These two equations imply that

(3) no¢=0,
(4) ¢¢ =0,
(5) rank (¢) =n — 1.

Then M admits a Lorentzian metric g, such that
(6) 9(¢X,¢Y) = g(X,Y) + n(X)n(Y),

and M is said to admit a Lorentzian almost paracontact structure (¢,£,7,g). In this

case, we get

7

(7 g(X7£) = n(X),
(8) O(X,Y) =g(X,9Y) = g(¢X,Y) = (Y, X),
9) (Vx®@)(Y, 2) = g(Y,(Vx8)Z) = (Vx®)(Z,Y),

where V is the covariant differentiation with respect to g. The Lorentzian metric
g makes ¢ a timelike unit vector field, that is, g(£,£) = —1. The manifold M
equipped with a Lorentzian almost paracontact structure (¢,&,7,g) is said to be a
Lorentzian almost paracontact manifold (briefly LAP-manifold) (cf. [11], [12]).

In equations (1) and (2) if we replace € by — &, then the triple (¢, £, n) is an almost
paracontact structure on M defined by Satd [25]. The Lorentzian metric given by (6)
stands analogous situation to almost paracontact Riemannian metric for any almost
paracontact manifold (cf. [25], [26]).
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3. DIFFERENT CLASSES OF LAP-MANIFOLDS

An LAP-manifold M equipped with the structure (¢, £, 7, g) is called a Lorentzian
paracontact manifold (briefly LP-manifold) [11] if

(10) ®(X,)Y) = % ((Vxn) Y + (Vyn) X) .

An LAP-manifold M equipped with the structure (¢,£,7, g) is said to be Lorentz-
ian para Sasakian (in brief, LP-Sasakian) manifold [11] if

(11) (Vx9)Y = g(¢X, Y )¢ +n(Y)$* X,
or equivalently,
(12) (Vxd)Y =n(Y)X + g(X,Y) + 2(X)n(Y )¢,

or equivalently,
(13) (Vx®)(Y, 2) = 9(X,Y)n(2) + g(X, Z)n(Y) + 20(X)n(Y)n(Z).

In an LP-Sasakian manifold the 1-form 7 is closed.
Also in (11] it is proved that if an n-dimensional Lorentzian manifold (M,g)
admits a timelike unit vector field £ such that the 1-form 7 associated to & is closed

and satisfies .
(14) (VxVyn)Z = g(X,Y)n(Z) + 9(X, Z)n(Y) + 2n(X)n(Y )n(Z),

then M admits an LP-Sasakian structure.

An n-dimensional Lorentzian manifold (]\71 , g) is said to be a Lorentzian special
para Sasakian (in brief, LSP-Sasakian) manifold [11] if M admits a timelike unit
vector field £ with its associated 1-form 7 satisfying

(15) B(X,Y) = (Vxn)Y =¢(g(X,Y) +n(X)n(Y)), e=1.

Of course, an LSP-Sasakian manifold is an LP-Sasakian manifold.

On the other hand, the eigen values of ¢ are —1, 0 and 1; and the multiplicity
of 0 is one. Let k and [ be the multiplicities of —1 and 1 respectively. Then
trace (¢) = L — k. So, if (trace (¢))? = (n — 1)?, then either [ = 0 or k = 0. In this
case we call the structure a trivial LP-Sasakian structure [5].

An LAP-manifold is called an LP-cosymplectic manifold [24] if

(16) V¢ =0,
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and an LP-nearly cosymplectic manifold [24] if
) (Vx¢) X =0, X e€TM.

4. EXAMPLES

A beautiful example of a 5-dimensional L P-Sasakian manifold is given as follows.

Example 4.1 (Matsumoto, Mihai and Rosca [13]). Let R® be the 5-dimensional
real number space with a coordinate system (z,v, z,t, s). Defining

n=ds—ydr—tdz, €= %, g=n®n— (dz)? - (dy)* — (d2)* — (dt)?,

o 5 P o _ a
¢(%>“ oz~ Yos - ¢(ay)“'a—y’

9 __o _,0 ON__9 LAY
¢’<5§) =5 " toso d’(m)‘ ot ’ ¢<as>“0

the structure (¢, £,, g) becomes an LP-Sasakian structure in R5. The metric tensor

and

g can be expressed by matrix

1+y2 0 ty 0 -y

0 -1 0 0 0

g= ty 0 —-1+t> 0 —t
0 0 0 -1 0

-y 0 -t 0 1

Recently, Tripathi and Shukla [32] have found the examples of Lorentzian almost
paracontact structures on an almost paracontact Riemannian manifold. A differ-
entiable manifold M is said to admit an almost paracontact Riemannian structure
(¢,€,m,9), where ¢ is a (1,1) tensor field, £ is a vector field, n is a 1-form and g is

a Riemannian metric on M such that

(18) P =I-n10¢ nE) =1,

(19) 9(¢X,8Y) = g(X,Y) — n(X)n(Y)
for all vector fields X and Y on M (see [25, 26]). Here, we state the following theorem

which interrelates the Riemannian and Lorentzian almost paracontact structures.
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Theorem 4.2 (Tripathi and Shukla {32]). On a differentiable manifold M, (¢,€,7, 9)
is an LAP-structure if and only if (¢,&,7,¢’) is an almost paracontact Riemannian

structure, where 1,9,7', g are related by

(20) n(X) = —n'(X),

(21) 9(X,Y) =4'(X,Y) = 2n(X)n(Y).

In view of the preceding theorem, it is now easy to construct a Lorentzian almost
paracontact structure by an almost paracontact Riemannian structure and vice-

versa.

An LAP-structure is not unique on a differentiable manifold. In fact, we have

Theorem 4.3 (Prasad and Ojha [24]). If M admits an LAP-structure (¢,£,1,9),
then (¢',&',1', g') is also an LAP-structure, where for a non-singular (1,1) tensor ¢

g=y7l, n=noy, ¢=v'¢y, ¢ (X Y)=gWXyY).

5. SECTIONAL CURVATURE IN AN LP-SASAKIAN MANIFOLD

Let (1\71 ,g) be an n-dimensional Lorentzian manifold. A 2-dimensional linear
subspace E of T,M is called a plane section. A plane section E is said to be non-
degenerate if for each non-trivial vector V' € E, there exists a vector U € E such
that g (U, V) # 0. If V and U form a basis of a non-degenerate plane section F, then
g(V,V)g(U,U) - g(V,U)? is a non-zero quantity. The sectional curvature K (p, E)
of a non-degenerate plane section E at p with a basis {V,U} is given by

K (o.5) = —IRGOV0)

g(V,\V)g(U,U) - g(V,U)
where R denotes the curvature tensor with respect to g.

A non-degenerate plane section E is said to be timelike if it is spanned by a

spacelike vector and a timelike vector [1]. The sectional curvature of an L P-Sasakian

manifold is determined by the following theorem [11]:

Theorem 5.1 (Matsumoto [11]). In an n-dimensional LP-Sasakian manifold M
with structure (¢,&,7,g) the sectional curvature of each plane section which is span-

ned by £ and a spacelike vector is equal to 1.
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Theorem 5.2 (Matsumoto [11]). Let (M, g) be a Lorentzian manifold of dimension
n. Suppose that

(i) M admits a timelike unit vector field &,
(ii) the 1-form n associated to § is closed,
(ili) L¢VE =0, where L¢ denotes the Lie derivative with respect to €; and
(iv) the sectional curvature for timelike planes containing £ are equal to 1 at

every point of M.

Then M has a Lorentzian paracontact structure.

6. INFINITESIMAL CL-TRANSFORMATIONS IN AN LP-SASAKIAN
MANIFOLD

Definition 6.1. A vector field V* in an LP-Sasakian manifold M is said to be an
infinitesimal CL-transformation if it satisfies

Ly {jhi} = p;OF + pib} + (njd’ + 7h’¢?) + Bjit"

for certain vector field p; which is called an associated vector field and certain con-
stants o and 8, where Ly denotes the Lie derivative with respect to V* and { jhi}
is the Christoffel symbol of gj;.

The nature of the associated vector field for an infinitesimal CL-transformation
in an LP-Sasakian manifold is determined by the followings:

Proposition 6.2 (Matsumoto and Mihai [12]). For an infinitesimal CL-trans-
formation V* in an LP-Sasakian manifold, the associated vector field p; is closed,
that is, vjpi = vipj.

Theorem 6.3 (Matsumoto and Mihai [12]). For an infinitesimal CL-transformation

V% in an LP-Sasakian manifold, we have
Lygji = =Vjpi + (@ + B) gji + (B — &) njmi.

In particular, if o = (3, then the vector field V* + %pi is a homothetic conformal
Killing vector field.
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7. CL~-RELATIONS

A symmetric affine connection in an LP-Sasakian manifold M with the structure

(¢,&,7,9) is said to be CL-related with the connection { jhi}, if it satisfies

(22) thi = {jhi} + p;6¢ + Pz“s;'l + o (77j¢? + 77i¢?) +2¢"¢;;
for a certain vector field p* and a certain constant ct.
The curvature tensor of I"jhi is obtained by the followings.

Proposition 7.1 (Matsumoto and Mihai [12]). If a symmetric affine connection
thi is CL-related with the connection { jhi} in an LP-Sasakian manifold M, then
the curvature tensor R”,‘cji of T;%; is given by

(23) R”}cﬁ = R,’:ji+ (Prj — Pjk) sh+ Pki(s;l — Pjidf+

A +2(a-1) (¢Z¢ji - ¢;’¢m‘) + (3 + 2) (grim; — gzime) €
where the tensor Pj; is defined by

(24) Py = Vpi+a(a— 2)nimi — pipi — 26 i — (Bimi + Bimy)

with pj = pih.-

Proposition 7.2 (Matsumoto and Mihai [12]). If the connection I"jhi defined by
(22) s flat, then the vector field p* is closed.

Theorem 7.3 (Matsumoto and Mihai [12]). In an LP-Sasakian manifold M, if the
connection I‘jhi defined by (22) is flat, then the curvature tensor Rfc‘ji with respect to

gji satisfies
(25) R =(Ba+1) (gkidgl — g5i0 ) +2(a-1) (¢’ki¢? = ¢ji¢’;§)
+ (3a +2) ("7k77i5]h — miOf + grin; €™ — gjmkfh) .

During the study of an invariant tensor field under CL-relation in an LP-Sasakian
manifold, the authors of [12] obtained ann invariant tensor field under a CL-relation
given by (22). Then they introduced the notion of & CL-relation in an LP-Sasakian

manifold.

Theorem 7.4 (Matsumoto and Mihai {12]). Let a symmetric affine connection thi
in an LP-Sasakian manifold M be CL-related with the Lorentzian metric connection

{ jhi} and it be given by (22). If the tensor field Pj; is symmetric with respect to
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j and i, then a tensor field W,?ji s invariant under this relation, where the tensor
field W,fji is given by

(26) Wi = Ty = (30 +2) Ay (Taa} — Tyi0})

— (Ba+2) B (Tun*0} — Tis*0} ) ¢ — 2 (o~ 1) Ao (6451 — )T

= 2(a~1) By (4T - ¢Tu”) 8,
— (3 + 2) A1€" ((Thim; — Tyimw) + (Teki®n; — Teji*nic) 61)

for certain constants Ay ,As, By and Ba, T,?ji is defined as

(27) T = Zliclji_Ztskinsétagt + Z5ms€top,

, 1
(28) Zr; = R;clji‘i"n—:'I (Rkﬂs;’ - Rji&?)

and Tj; = Tll]Z

An LP-Sasakian manifold M is said to be CL-flat if the tensor field W,?ji defined
by (26) vanishes identically. Then the following is proved.

Theorem 7.5 (Matsumoto and Mihai [12]). Let M be an n-dimensional CL-flat
LP-Sasakian manifold. Then we have the following two cases:

(A) the manifold M is LSP-Sasakian and the curvature tensor szi has the form

Rl =c (gszs;L - gjﬂﬁ) + (e+1) ((5}1% - 51’377]') i — (951 — Grinj) fh)
for certain constant c, or
(B) the curvature tensor R} has the form

Rii=a (glci5§1 — 95i0p ) +(a—1) (¢ki¢? - ¢ji¢;cl)
+(a+1) ((5§~’nk - 51}577]') % — (951 — Gkitj) Eh)
+b (¢>ki¢? — ¢jibp + grid} — 9jibh + (Prin; — bsimk) €
- (¢;~‘le - ¢an) m)

Jor certain constant a and b.
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8. NULL STRUCTURE CONFORMAL VECTOR FIELDS ON AN LP-SASAKIAN
MANIFOLD

Definition 8.1 (Mihai and Rosca [14]). If dp is the soldering form (or a line element)
of an LP-Sasakian manifold M and C is a vector field such that

VC = fdp+€éAC=fdp+a®€é—-n®C,

where f € C®*M and a = b(C)is the dual 1-form of C, then C is defined as a
structure conformal vector field (Lcg = pg; p = 2f). The vector C is null vector if
g(C,C)=0.

The existence of the conformal vector field C defined above is determined by the
following theorems:

Theorem 8.2 (Mihai and Rosca [14]). Let M(¢,&,mn, g) be an LP-Sasakian manifold
and let C be a null structure conformal vector field on M. The existence of C is
determined by an exterior differential system in inyolution and any manifold M
which carries such a C is foliated by a 3-dimensional totally geodesic and of scalar
curvature (—1) submanifolds, tangent to C, ¢C and €.

Theorem 8.3 (Mihai and Rosca [14]). Let C be a null structure conformal vector
field on an LP-Sasakian manifold M(¢,€,m,9) and p (resp. a) be the conformal
scalar associated with C (resp. the dual form of C). Then one has the following
properties:

(i) p is an eigenfunction of A and an isoparametric function;

(ii) if L denotes the formal adjoint of Lom, then one has the relation L5n =

(n-1)a;
(iii) the two form a A n is harmonic;
(iv) if Z,Z' € TM, then

(LcV)(2,ZYy=-pm(2)Z' —pm(Z') Z + —pg (2, 2') &;

(v) C defines an infinitesimal conformal transformation of n, of the adjoint *n
of n and of all the functions g (C, Z).
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9. {-NULL GEODESIC GRADIENT VECTOR FIELDS ON AN LP-SASAKIAN
MANIFOLD

Definition 9.1 (Matsumoto, Mihai and Rosca [13]). Let M(¢,£,7,g) be an LP-
Sasakian manifold and let V, dp and U be the Levi-Civita covariant differential
operator with respect to g, the soldering form (or a line element) and a real null
vector field on M, respectively. If U satisfies

VU=XMp+n1QU +u®¢,

where A (resp. u = b(U) is the associated scalar field (resp. the dual form of U),
then U is said to be a &-null geodesic gradient vector field.

The existence of the vector field U has been ensured by the following theorem:

Theorem 9.2 (Matsumoto, Mihai and Rosca [13]). Let M(¢,&,7n,9) be an LP-
Sasakian manifold and let U be £-null geodesic gradient vector ﬁeld on M. The
existence of U 1is determined by an exterior differential system in involution and
any M which carries such a null vector field U is the local Riemannian product
M = My x Mle such that
(1) My is totally geodesic surface of scalar curvature —1 tangential to U and §;
(ii) M,Jf is a totally umbilical 2-codimensional submanifold having U as normal
null section. Furthermore '
(iif) U is an exterior concurrent vector field;
(iv) the conformal scalar A associated with U is an isoparametric function and
satisfies
Ric(oU) + A2 = 0;
(v) U defines an infinitesimal contact transformation on M and ¢U admits
infinitesimal transformations of generators &.

Also the necessary and sufficient condition in order that the vector field U de-
fines an infinitesimal conformal transformation in an LSP-Sasakian manifold is de-
termined by the following theorem:

Theorem 9.3 (Matsumoto, Mihai and Rosca [13]). Let M(¢,€,n,g) be an LSP-
Sasakian manifold having ® as almost cosymplectic form and let ¢ be the Lefebure
form associated with the semi-cosymplectic structure defined by the pair (®,7n). Sup-
pose that M carries a £-null geodesic gradient vector field U. Then the necessary
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and sufficient condition in order that U defines an infinitesimal transformation of
®, that is, LyP = r®, is that the conformal scalar + be defined by
r = —2n(U) + constant;

and in this case U defines also an infinitesimal conformal transformation of 1, that

is, ,CU'I/J = 7‘1[).

If in addition of U, M carries a null structure conformal vector field C, then M
is the local Riemannian product M = Mg x Mé: such that
(i) M¢ is a 3-dimensional submanifold of scalar curvature —1 and it is totally
geodesic and tangent to C, U and &;
(ii) M# is totally umbilical 3-codimensional submanifold.
Furthermore, the conformal scalar p and A corresponding to C' and U respectively,
satisfy pA = constant and
(a) C defines an infinitesimal conformal transformation of the dual form of U;
(b) the Lie derivative with respect to U of the dual form of C is dn-exact.
Pandey and Ojha [17] introduced and studied D-conformal transformation in an
LP-contact manifold. The conditions for an LP-contact to be an LP-cosymplectic
manifold are also obtained. LP-Sasakian manifolds are also studied by Pokhariyal
[19]. In 1999, the authors of [5] studied the LP-Sasakian manifold and obtained the

following results:

Proposition 9.4 (De, Matsumoto and Shaikh [5]). Each LP-Sasakian space form

is of curvature 1.

Theorem 9.5 (De, Matsumoto and Shaikh [5]). Each LP-Sasakian space form is a
trivial LSP-Sasakian space form.

Theorem 9.6 (De, Matsumoto and Shaikh [5]). A conformally flat LP-Sasakian
manifold is trivial LSP-Sasakian. Especially, if the scalar curvature r satisfies r =
n(n — 1), then the manifold is a trivial LSP-Sasakian space form.

Again the nature of Weyl-semi-symmetric LP-Sasakian manifolds is obtained by

the following theorem:

Theorem 9.7 (De, Matsumoto and Shaikh [5]). An n-dimensional (n > 3) LP-
Sasakian manifold satisfying R(X,Y)-C =0 is a trivial LSP-Sasakian space form,
where C is the conformal curvature tensor.
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From the above theorem the following corollary follows:

Corollary 9.8 (De, Matsumoto and Shaikh [5]). An n-dimensional (n > 3) confor-
mally symmetric LP-Sasakian manifold is LSP-Sasakian.

Theorem 9.9 (De, Matsumoto and Shaikh [5]). An'n-dimensional (n > 3) confor-
mally recurrent LP-Sasakian manifold is a trivial LSP-Sasakian space form.

10. LP-SASAKIAN MANIFOLDS WITH 7-PARALLEL RICCI TENSOR

Definition 10.1. The Ricci tensor S of an LP-Sasakian manifold Mis called 7-
parallel if it satisfies

(Vx$) (¢Y,62) =0
for all vector fields X, Y and Z.

The notion of Ricci-n-parallelity for Sasakian manifolds was introduced by Kon [8].
A necessary and sufficient condition for an LP-Sasakian manifold to have n-parallel
Ricci tensor is obtained in Mihai, Shaikh and De [15] which is as follows:

Proposition 10.2 (Mihai, Shaikh and De [15]). An LP-Sasakian manifold M(¢,n,
&,9) has n-parallel Ricci tensor if and only if

(vxS) (Y, 2)
=S(X,0Z)n(Y) + S(X,8Y)n(Z2) — (n - 1) (2 (X,Y)n(Z) + (X, Z)n(Y))

for el XY, Z € TM.

Taking an orthonormal frame field and then by contraction the authors [15]

proved the following propostion:

Proposition 10.3 (Mihai, Shaikh and De [15]). Let M(¢,7,&,9) be an n-dimen-
sional (n > 3) LP-Sasakian manifold with n-parallel Ricci tensor. Then we have the
following property:
(a) the scalar curvature r of M is constant;
(b) the square of the length |Q|? of the Ricci operator Q given by g(QX,Y) =
S(X,Y) of M is constant.
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11. n-EINSTEIN LP-SASAKIAN MANIFOLDS

Definition 11.1 (Mihai, Shaikh and De [15]). An LP-Sasakian manifold M is said
to be n-Finstein if its Ricci tensor S is of the form

S=ag+n®n,
where @ and b are smooth functions on M.

In [15] the Ricci tensor of an LP-Sasakian manifold is obtained as

r r
S(Y,2) = (m - 1) 9(Y,2) + (;: - n) n(Y)n(Z)
and the following theorem is proved.

Theorem 11.2 (Mihai, Shaikh and De [15]). Let M(¢,n,£,g) be an n-dimensional
(n > 3) n-FEinstein LP-Sasakian manifold which is not an Finstein one. Then the
scalar curvature r of M is a constant if and only if the timelike vector field € is

“harmonic.

If an LP-Sasakian manifold with n-parallel Ricci tensor admitting a non-null

concircular vector field, then the following result is obtained.

Theorem 11.3 (Mihai, Shaikh and De [15]). Let M(¢,7,£,g) be an n-dimensional
(n > 3) n-FEinstein LP-Sasakian manifold with n-parallel Ricci tensor admitting a
non-null concircular vector field. Then any one of the following conditions hold in
M:

(a) the concircular vector field reduces to a parallel vector field;

(b) the scalar curvature of the manifold is given by r = n(n —1);

(c) the timelike vector field € is harmonic.
12. SOME TRANSFORMATION IN LP-SASAKIAN MANIFOLDS

We now consider a transformation p which transforms an LP-Sasakian structure
(¢,1,&, g) into another LP-Sasakian structure (q_S, 7,£, g). We denote by the notation
“bar” the geometric objects which are transformed by the transformation u.

Considering this transformation the following result is obtained.

Theorem 12.1 (Mihai, Shaikh and De [15]). In an LP-Sasakian manifold M(¢,n,&,
g) the transformation p which leaves the curvature tensor invariant and n(€) # 0 is

an isometry.
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Again in an almost paracontact Riemannian manifold, if an infinitesimal trans-

formation V satisfies
(Lvn) (X) = on(X)

for a scalar function o, then we call it an infinitesimal paracontact transformation. In
particular, if o vanishes identically, then it is called an infinitesimal strict paracontact
transformation [10].

The nature of an infinitesimal paracontact transformation in an LP-Sasakian
manifold is determined by the following theorem:

Theorem 12.2 (Mihai, Shaikh and De [15]). In an LP-Sasakian manifold, the
infinitesimal paracontact transformation which leaves a Ricci tensor invariant is an

infinitesimal strict paracontact transformation.

13. 3-DIMENSIONAL LP-SASAKIAN MANIFOLDS

Next, Shaikh and De [27] studied the 3-dimensional LP-Sasakian manifolds and
obtained several characteristic results in this manifold which can be stated as follows:

Theorem 13.1. A 3-dimensional LP-Sasakian manifold satisfying the condition
R(X,Y)-S =0 is a space form.

Definition 13.2. An LP-Sasakian manifold is said to be locally ¢-symmetric if
¢* (VwR) (X,Y,Z2) =0
for all vector fields W, X, Y, Z orthogonal to £.

The necessary and sufficient condition for an LP-Sasakian manifold to be locally
¢-symmetric is obtained by the following theorems (cf. Shaikh and De [27]):

Theorem 13.3. A 3-dimensional LP-Sasakian manifold is locally ¢-symmetric if
and only if the scalar curvature v is constant.

Theorem 13.4. If a 3-dimensional LP-Sasakian manifold satisfies the condition
R(X,Y)-S =0, then the manifold is locally ¢-symmetric.

Theorem 13.5. If a 3-dimensional LP-Sasakian manifold with n-parallel Ricci ten-

sor s locally ¢-symmetric.

Theorem 13.6. If a 3-dimensional LP-Sasakian manifold with n-parallel Ricci ten-

sor is a space form.
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Theorem 13.7. If a 3-dimensional LP-Sasakian manifold satisfies the condition
(sz) (Y,Z) + (ﬁyS) (X, 2)+ (v,zS) (X,Y)=0,
then the manifold is a space form and hence is locally ¢-symmetric.

Theorem 13.8. If a 3-dimensional LP-Sasakian manifold admits a non-null con-

circular vector field then the manifold is a space form.

14. SUBMANIFOLDS

Let M be a submanifold of an LAP-manifold M(¢,¢,n,g). Let the induced
metric on M also be denoted by g. Then Gauss and Weingarten formulae are given
respectively by

‘—7Xy=VxY+h(X,Y), X, YeTM,

VxN = —-AxyX +VxN, NeTM,

where V is the induced connection on M, h is the second fundamental form of the
immersion, and —AyX and VXLN are the tangential and normal parts of VxN.

From these two equations one gets
9(MX,Y),N) = g(ANX)Y).

Moreover, we have

(Vx®)Y
= ((VxP)Y — Ary X —th(X,Y)) + (VxF)Y + h(X, PY) - fh(X,Y)),

(Vxod)N
= ((Vxt)N — AsnX — PANX) + (Vx f)N + h(X,tN) - FANX),
where
¢X = FXeTiM; PXeTM, FXeTlM,
#N = tN + fN; tN e TM, fNeT!M,

(VxP)Y = VxPY — PVyxY,
(VxF)Y = VxFY — FVxY,
(Vxt)N = VxtN —tVEN,

(Vxf)N = VgfN — fVgN.
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Let £ € TM. We write TM = {¢}@®{€}*, where {¢} is the distribution spanned
by £ and {£}* is the complementary orthogonal distribution of {¢} in M. Then we
get

PE=0=F¢, noP=0=noF,
P*4+tF=1+1®¢  FP+fF=0,
fP+Ft=1, tf+Pt=0,
ker(P) = ker(P?) = ker(tF — I —n ® £),
ker(F) = ker(tF) = ker(P? — I — n ® &),
ker(t) = ker(Ft) = ker(f? — I),
ker(f) = ker(f?) = ker(Ft + I)
ker(P(gy1) = ker(P?|(ey1) = ker(tF| gy —I),
ker(Fl(e2) = ker(tF| (g1 ) = ker(P?| (g2 —I)g.

The following two propositions are for submanifolds of LP-cosymplectic mani-
folds, tangent to £ (cf. Tripathi[30]).

Proposition 14.1 (Tripathi [30]). For a submanifold M of an LP-cosymplectic
manifold such that £ € TM, we have

Vx€=0, h(X,£)=0, AnX e {&}*, Ané=0.

Proposition 14.2 (Tripathi [30]). For a submanifold M of an LP-cosymplectic
manifold such that £ € TM, we have

(VxP)Y — Apy X — th(X,Y) =0,
(VxF)Y + h(X,PY) - fh(X,Y) =0,
(Vxt)N — AfyX — PAyX =0,
(Vxf)N + h(X,tN) — FANX =0.
Consequently,
(VxP) =0, (VxF){=0,
VeP=0, VeF=0, Vet=0, Vef=0.
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15. DIFFERENT TYPES OF SUBMANIFOLDS

A submanifold M of a Lorentzian almost paracontact manifold M with é€ TM
becomes an almost semi-invariant submanifold (cf. Kalpana and Singh [7]) of M
if TM can be decomposed as a direct sum of mutually orthogonal differentiable
distributions

TM=D'eoD°®oDe {¢},
where

D' = ker(Fliyr) = {X € {€}* : | X|| = |PX[|} = TM n§(TM),

D° = ker(Pl(gys) = {X € {&}* : IIX|| = |FX|} = TM 0 ¢(T*M).

Here, the distribution D! is invariant, the distribution D0 is anti-invariant and the
distribution D is neither invariant nor anti-invariant by ¢. Moreover, we have

T*M=D'eD’°eD,
where

D! = ker(t) = T*M N ¢(T+ M), D° = ker(f) = T+ M N ¢(TM),

FDY=D° FD =D, tD° =7D° tD="D.
For X € TM we can write
(29) X=UX+UX +UX - n(X)E,

where U, U® and U are projection operators of TM on D!, D° and D respectively.

A submanifold M of a Lorentzian almost paracontact manifold M is an invariant
(resp. anti-invariant) submanifold of M if ¢ (TM) C TM (resp. ¢ (TM) C T+M).
An almost semi-invariant submanifold of a Lorentzian almost paracontact manifold
is a semi-invariant submanifold if D = {0}. A semi-invariant submanifold of a
Lorentzian almost paracontact manifold becomes an invariant submanifold (resp.
anti-invariant submanifold) if D° = {0} (resp. D! = {0}). An almost semi-invariant
submanifold is proper if none of the distributions D!, D° and D is zero. A semi-
invariant submanifold is proper if D? # {0} # D.
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16. SUBMANIFOLDS OF LORENTZIAN S-PARACONTACT MANIFOLDS

Analogous to the definition of special paracontact Riemannian manifolds, in [32]

the following definition is given.

Definition 16.1 (Tripathi and Shukla [32]). An LAP-manifold is said to be a
Lorentz-ian s-paracontact manifold if $X = Vx¢ or ®(X,Y) = (Vxn)Y.

An LP-Sasakian manifold is always a Lorentzian s-paracontact manifold. Tripathi
and Shukla [32] also prove the following theorem.

Theorem 16.2. For a submanifold M of a Lorentzian s-paracontact manifold, it
follows that

¢X = Vx{+h(X,§), &€ TM,
$X = A X +VgE, €€ THM,
n(AnNX) = 0, £ e THM,
n(AnvX)= g(¢X,N), e TM

for all X € TM and N € T+ M. Moreover, let & be tangential to M. Then M is
an tnvariant submanifold if and only if h(X,€) = 0, and M is an anti-invariant
submanifold if and only if Vx& = 0.

The following theorem is for totally umbilical submanifolds.

Theorem 16.3 (Tripathi and Shukla [32]). If M is a totally umbilical submanifold
of a Lorentzian s-paracontact manifold such that € is tangential to M, then

(a) M is necessarily minimal and consequently totally geodesic, and
(b) M is an invariant submanifold and Vx§& # 0.

The characterization of an anti-invariant submanifold is as follows.

Theorem 16.4 (Tripathi and Shukla [32]). A submanifold M of a Lorentzian s-
paracontact manifold such that & is normal to M is an anti-invariant submanifold if
and only if A¢X = 0. Consequently, if M is totally geodesic then it is anti-invariant.

Since LP-Sasakian and LSP-Sasakian manifolds are always Lorentzian s-paracon-
tact manifolds, therefore the results of this section are valid for the submanifolds of
LP-Sasakian and LSP-Sasakian manifolds.
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17. INTEGRABILITY CONDITIONS

Let M be a semi-invariant submanifold of an LA P-manifold M, and let [¢, ¢] be
the Nijenhuis tensor of ¢. Let superscripts T and L in a term denote its tangential
and normal parts respectively. Then necessary and sufficient condition for the inte-
grability of the distributions D'@{¢} and DO {¢} on a semi-invariant submanifold
of an LA P-manifold are given in the following two theorems. '

Theorem 17.1 (Tripathi [29]). Let M be a semi-invariant submanifold of an LAP-

manifold. Then the following three statements are equivalent:

(a) the distribution D& {€} is integrable,
() (I8, 81(X, )" = [P, PI(X,Y), X,Y € D'o{¢},
(0) (¢ l(X, ) =0, U°PPI(X,Y)=0, X,YeD'®{¢}.

Theorem 17.2 (Tripathi (29]). The distribution D ®{&} on a semi-invariant sub-
manifold M of an LAP-manifold is integrable if and only if

[P,P)(X,Y)=0, X, YeD@ {¢}.

The distribution {¢}* in a Lorentzian almost paracontact manifold is called the

paracontact distribution [32]. In [32], the following theorem is proved.

Theorem 17.3. On a Lorentzian s-paracontact manifold M the paracontact distri-
bution {¢}1 is integrable.

This theorem implies the following theorem.

Theorem 17.4 (Tripathi and Shukla [32]). Let M be a submanifold of a Lorent-
zian s-paracontact manifold such that £ is tangential to M. Then the paracontact
distridbution {f}J- on M is integrable. Consequently, if M is semi-invariant then
the distribution D' @ DO is integrable; and if M is almost semi-invariant then the
distribution DY @ D° @ D is integrable.

Following theorems are for integrability conditions of semi-invariant submanifolds
of LP-cosymplectic manifolds [30).

Theorem 17.5 (Tripathi [30]). Let M be a semi-invariant submanifold of an LP-
cosymplectic manifold M. Then D € {D*,D°} is integrable if and only if D &{&} is
integrable.
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Theorem 17.6 (Tripathi [30]). Let M be a semi-invariant submanifold of an LP-
cosymplectic manifold M. Then the following statements are equivalent:

(a) D° is integrable,

(b) D° @ {¢} is integrable,

(C) ApxY =0, X,YGDO,

(d) R(Y,Z)eD!, XeD° ZeTM.

Theorem 17.7 (Tripathi [30]). Let M be a semi-invariant submanifold of an LP-
cosymplectic manifold M. Then the following statements are equivalent:

(a) D! is integrable,

(b) D! @ {¢} is integrable,

(c) h(X,PY)=h(PX,Y), X,Y e DY,

(d) g(h(X,PY),FZ)=g(h(PX,Y),FZ), X,YeD!, ZeTM.

18. TOTALLY UMBILICAL AND TOTALLY GEODESIC SUBMANIFOLDS

Let D be a distribution on a submanifold M of an LAP-manifold. Then M is D-
totally umbilical if h(X,Y) = g(X,Y)K for some K € T+ M. In [30], the following
results are proved.

Theorem 18.1. Let D be a distribution on a submanifold M of an LP-cosymplectic
manifold such that £ € D. If M is D-totally umbilical then M is D-totally geodesic.

Theorem 18.2. Fach totally umbilical submanifold M of an LP-cosymplectic man-
ifold such that £ € TM, is totally geodesic.

Theorem 18.3. Each totally umbilical semi-invariant submanifold of an LP-cosym-
plectic manifold is totally geodesic.

Theorem 18.4. If M is a totally umbilical semi-invariant submanifold of an LP-
cosymplectic manifold, then D° and D' are integrable.

Theorem 18.5. Let M be a submanifold of an LP-cosymplectic manifold such that
E€TM. Then

(a) {€} and {€}" are parallel,

(b) {¢} and {¢ } are integrable and their leaves are totally geodesic in M,

(c) M is locally product of leaves of {¢} and {£}+,
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(d) M is ({E},{&}l)-mixed totally geodesic.

Theorem 18.6. Let M be a semi-invariant submanifold of an LP-cosymplectic man-
ifold M. If M is (DO,Dl)-mixed totally geodesic then D° is integrable.

Theorem 18.7. Let M be a semi-invariant submanifold of an LP-cosymplectic man-
ifold M. If M is D -totally geodesic then D! is integrable.

19. NON-EXISTENCE

19.1. Non-existence of an anti-invariant distribution. A distribution A4 on a
submanifold of an LAP-manifold is an anti-invariant distribution if ¢ (A4) C T+ M.
Let M be a submanifold of a Lorentzian s-paracontact manifold M with £ € TM.
Then, we get (cf. Tripathi [32])

n(AnX) = g(FX,N).
Moreover, if M is an LP-Sasakian manifold, then
(VxP)Y — Apy X — th(X,Y) = g(¢X.8Y)E + n(Y)$* X.
Let X € Aand Y € TM. Then
9(ArxX,Y) = g(h(Y,X), FX)
= g(th(¥, X),X)
= ¢(VyPX - PVyX — ApxY - g(¢Y,9X)¢ — n(X)¢*Y, X)
= —g(VyX,PX) - g(ArxY, X)
= —g(ArxX,Y),
which implies that Apx X =0, X € A and consequently
0 =n(ArxX) = g(FX,FX) = g(¢X,¢X) = g(X, X),
that is, A = {0}. Thus we obtain the following theorem (cf. {32]).
Theorem 19.1. Let M be a submanifold of an LP-Sasakian or LSP-Sasakian man-

ifold M with € € TM. Then there does not ezist any anti-invariant distribution A
such that A L {€}.

It is known that each submanifold of a contact metric manifold (and hence
Sasakian manifold) normal to the structure vector field is anti-invariant (cf. Tri-
pathi and Shukla [31]). Contrast to this result, in view of the definitions of CR
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(cf. De and Sengupta (3], Prasad [21]), semi-invariant (cf. Kalpana and Guha [6])
and almost semi-invariant (cf. Kalpana and Singh [7]) submanifolds of Lorentzian
almost paracontact manifolds and in view of Theorem 19.1 we have the following
theorem (see Tripathi and Shukla [32], also see De and Shaikh [4]).

Theorem 19.2. An LP-Sasakian or LSP-Sasakian manifold does not admit any
proper CR, semi-invariant or almost semi-invariant submanifold. In fact, in these

cases the anti-invariant distribution D° becomes {0}.

19.2. Non-existence of proper mixed foliated semi-invariant submanifolds.
In [9], a semi-invariant submanifold is said to be mixed foliated if D @ {£} is
integrable and h(Z +¢,X) = 0 for all Z € D! and X € DY. Tripathi (28], has
shown that a Sasakian manifold does not admit any proper mixed foliated semi-
invariant submanifold.

For a submanifold M of a Lorentzian s-paracontact manifold, it follows that (cf.
Tripathi and Shukla [32])

¢X=§XgZVX§+h(X,£), E,XETM

If M is semi-invariant, then for X € D® we get Vxé = 0 and ¢X = h(X,§).
Moreover, if M is assumed to be mixed foliated, then for X € D% we get ¢X = 0,
that is D = {0}. Thus we have the following theorem.

Theorem 19.3. A Lorentzian s-paracontact manifold can not admit any proper

mized foliated semi-invariant submanifold.
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