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GEOMETRY OF COISOTROPIC SUBMANIFOLDS

DAE Ho JiN

ABSTRACT. The purpose of this paper is to study totally umbilical coisotropic sub-
manifold (M, g, SM) of a semi-Riemannian manifold (M, g).

1. INTRODUCTION

The theory of submanifolds of a Riemannian or semi-Riemannian manifold is one
of the most important topics of differential geometry. In case § is degenerate on the
tangent bundle TM of M we say that M is a lightlike (degenerate, null ) submanifold
of M. While the geometry of semi-Riemannian submanifolds is fully developed, its
counter part of lightlike submanifolds is relatively new and in a developing stage
(see Duggal-Bejancu [1], Duggal-Jin [2]).

According to the behavior of the induced tensor field g on the submanifold M of g
and the rank of the radical distribution, we have four typical classes of submanifolds;
that is, since g is degenerate, for each tangent space T, M we consider

T.Mt = {u € ToM : §(u,v) = 0, Vv € T,M},

which is a degenerate subspace of T, M. Since M is lightlike, both T, M and T, M+
are degenerate orthogonal subspace but no longer complementary. In this case the
dimension of Rad T, M = T, M N T, M~ depends on the point z € M. The sub-
manifold M of M is said to be r-lightlike (r-degenerate, r-null) submanifold if the
mapping

RadTM:z € M — RadT, M

defines a smooth distribution on M of rankr > 0. Then we call Rad T M the radical
(lightlike, null) distribution on M. '
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The followings are four possible cases with respect to the dimension m and co-

dimension n of M and rankr of Rad TM (see Duggal-Bejancu [1]):

(I) r-lightlike submanifold: 0 < r < min{m, n},
(II) coisotropic submanifold: l<r=n<m,
(III) isotropic submanifold: l<r=m<mn,

(IV) totally lightlike submanifold: 1 < r = m = n.

Recently Duggal and Jin [2] studied the geometry of totally umbilical lightlike
submanifolds of a semi-Riemannian manifold M and found the conditions for the
induced connection on M to be a metric connection and its induced Ricci tensor of
M to be symmetric.

The purpose of the present paper is to study the geometry of totally umbili-
cal coisotropic submanifolds in a semi-Riemannian manifold. We characterize M
embedded in M of constant curvature, and find the conditions for the induced con-
nection on M to be a metric connection and its induced Ricci tensor of M to be

symmetric.
2. COISOTROPIC SUBMANIFOLDS

Let (M, g) be a real (m + n)-dimensional semi-Riemannian manifold of constant
index q such that m,n > 1; 1 < ¢ < m+n -1 and (M, g) be a coisotropic
submanifold of dimension m of M. Then we have RadTM = TM<'. Let SM be
the complementary vector subbundle to Rad TM in TM which is called the screen

distribution, that is, we have the following decomposition
TM =RadTM 1 5M, (1)

where | means the orthogonal direct sum. From now on we denote a coisotropic
submanifold by (M, g, SM). Throughout this paper we denote by F(M) the algebra
of smooth functions on M and by I'(E) the F(M) module of smooth sections of a
vector bundle E over C. We use the same notation for any other vector bundle. In
the sequel we use the range of indices: 4, j, k,--- € {1,---,n}.

Theorem 2.1 (Duggal-Bejancu [1]). Let (M, g, SM) be a coisotropic submanifold
of a semi-Riemannian manifold (M, §). Then there ezists a complementary vector
bundle tr(TM) of RadTM in SM* such that, for any basis {&} of T(tr(TM)|y)
on a coordinate neighborhood U C M, there exist smooth sections {N;} of SM=|y
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satisfying:

g(Ni, &) = dijs (2)
g(Ni, Nj) = 0. (3)
The vector bundle tr(TM) called the transversal vector bundle of M, we obtain
TM|py =TM & tr(TM) = (RadTM @ tr(TM)) L SM. (4)
Using the above decomposition we have a local quasi-orthonormal field of frames of

M along M:
(€1, &n, N1, Ny, Fup1,-+, Fin} (5)

where {&1,- -+, €, } is a lightlike basis of I'(Rad TM), {N1,: -, Nn} a lightlike basis
of T'(tr(TM)), and {F,41,- -, Fin} an orthogonal basis of T'((SM)|u).
We have also that RadTM @ tr(T'M) is non-degenerate. Since

{61,"'1 fn, Nl)' " N’n}

is a null basis of ['(SM<'), the restriction of g on the screen distribution SM has
the index ¢ — n.
Now, we define locally the differential 1-forms {n;} on I'(TM) by

ni(X) = 9(X, N;), VXeI(TM). (6)

It follow that {7;} are dual to the basis {¢;} of (T M'). Denote by P the projection
of TM on the screen distribution SM with respect to the decomposition (1) and for
any X € I'(T'M) obtain

X = PX +n(X)&. (7

Suppose V is the Levi-Civita connection on M and according to (4) we put
VxY = VxY +h(X,Y), (8)
UxN = —AyX + VEN (9)

for any X,Y € T(TM) and N € T(tr(TM)), where VxY and AnxX belong to
I'(TM), while h(X, Y) and V5N belong to I'(tr(TM)).

It is easy to check that V is a torsion-free linear connection on M, h is a
['(tr(T'M))-valued symmetric F'(M)-bilinear form on I'(T'M), Ay is a linear operator
on I'(T'M) and V- linear connection on the transversal vector bundle tr(T'M). Ac-
cording to the general theory of submanifolds we call (8) and (9) the Gauss formulae
and the Weingarten equation respectively. Since {&;, N;} is locally pairs of lightlike
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sections on U C M, we define symmetric F(M)-bilinear forms h; and 1-forms 7;;,
respectively, on U by

hi(X) Y) = g(h(X’ Y)) €i)a (10)
7 (X) = g(V¥Ny, &),
for any X,Y € I'(TM). It follow that
h(X,Y) = (X, Y)N;, (1)
ViN; = 7;(X)N;.
Hence, on U, the expressions (8) and (9) become
VxY = VxY + hi(X, Y) N;, (12)
vai = —ANX + Tij (X) N; (13)

for any X, Y € I(TM). We call h and h; (i = 1,- - -,n) the second fundamental form
and the local second fundamental forms of M with respect to tr(T'M) respectively
and Ay, (¢ = 1,---,n) the shape operators of M.

Further, taking into account that V is a metric connection and by using (12) we
obtain

(Vxg) (Y, Z2) = hi(X, Y)m: (Z) + hi (X, Z)m: (V) (14)

for any X, Y, Z € I'(TM). Thus, in general, the induced connection V is linear
but not a metric (Levi-Civita) connection. However, because tr(TM) is a totally
lightlike vector bundle it follows that V* is a metric connection.

Next, since V is a metric connection and {¢;} are lightlike orthogonal vector field,
we derive

§(Vx&, &) + (4, Vx¢&;) = 0,

for any X € I'(TM), which imply

hi (X, &) + hj (X, &) =0, (15)
hi (X, &) =0, (16)
for any X € I'(TM). Replacing X by &; in (15) and by using (16) with X = &;, we
obtain
hj (&, &) = 0. (17)
Thus the local second fundamental forms of a coisotropic submanifold vanish iden-
tically on I'(Rad TM) x I'(Rad TM). By using (9) we obtain
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and
g(ANiX, Ni) =0 (19)

for any X € T'(TM).
Next, consider the decomposition (1) and obtain

VxPY = V4PY + h* (X, PY), (20)
Uxt = —AX +Vie (21)

for any X,Y € I'(TM) and { € I'(RadTM), where V3 PY and A.X belong to
T'(SM), while h* (X, PY) and V¢ belong to T'(Rad TM). It follows that V* and
V*L are linear connection on the screen and radical distribution respectively, A
is a linear operator on I'(T'M), h* is bilinear form on I'(T'M) x I'(SM). We call
(20) and (21) the Gauss formulae and the Weingarten equation respectively for the
screen distribution SM. It is easy to check that the linear connection V* is a metric

connection on SM. Locally, we define on U
hi (X, PY) = g(h*(X, PY), N;),
pii (X) = §(Vx& N;),
for any X, Y, € I'(T'M). It follow that
h*(X, PY) = hj (X, PY)¢;,
Vi éi = pij (X) &)
for any X,Y € I'(TM). Hence, on U, locally (20) and (21) become
VxPY = VxPY + hi(X, PY)¢, (22)
Vx& = - AgX +pi (X) (23)

We call h* and h] the second fundamental form and the local second fundamental
forms of SM with respect to RadTM and Ag, the shape operators of the screen
distribution SM. The geometric objects from Gauss and Weingarten equations (12)
and (13) on one side and (22) and (23) on the other side are related by

h} (X, PY) = 9(An, X, PY), (24)
hi (X, PY) = g(AgX, PY), (25)
A&gi = 07 g(A&X, N]) = 01 (26)

pij (X) = -7 (X),
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for any X,Y € I'(TM). Hence (23) becomes
Vx&i = — A X — 15 (X) &5 (27)
The equations in (26) say that &; are eigenvectors of A¢, corresponding to the zero

eigenvalues and Ag, are I'(SM)-valued linear operators.
Since V is a torsion-free linear connection, by using (22) we obtain

VixPY — ViyPX — [PX, PY|={h} (PY, PX) — ki (PX, PY)}&. (28)
From the equations (6) and (28) we obtain
% ((PX, PY]) = b} (PX, PY) — b} (PY, PX).

From the last equation and (24), since according to (7) the components of any
X € I'(TM) with respect to &; are 7;(X), we obtain

Theorem 2.2. Let (M, g, SM) be a coisotropic submanifold of a semi-Riemannian
manifold (M, g). Then the following assertions are equivalent:

(1) SM is integrable.

(2) h* is symmetric on T(SM).

(3) An is self-adjoint on T'(SM) with respect to g.
(4) V* is torsion-free linear connection.

A coisotropic submanifold (M, g, SM) of a semi-Riemannian manifold (M, §) is
said to be totally geodesic if its second fundamental tensor h vanishes, i.e.,
h(X,Y)=0 forany X,Y € I'(TM).
By direct calculation it is easy to see that M is totally geodesic if and only if the
local second fundamental tensors h; all vanish on M, i.e.,

hi(X,Y) =0 forany X,Y € I'(TM).
Next by using (14)—(17) and (24)—(26) we obtain the following theorem.

Theorem 2.3 (Duggal-Bejancu [1]). Let (M, g, SM) be a coisotropic submanifold of
a semi-Riemannian manifold (M, ). Then the following assertions are equivalent:

(1) M is totally geodesic.

(2) The induced linear connection V on M is metric connection.
(3) The second fundamental forms h; of M vanish on M.

(4) A; vanish on T(TM) for any £ € I'(Rad TM).

(5) RadTM is a Killing distribution.

(6) RadTM is a parallel distribution with respect to V.
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Denote by R and R the curvature tensors of V and V respectively. Then by
straightforward calculations and using (12) and (13), we obtain the following equa-
tions (29)—(30) for any X,Y, Z € I'(TM).

R(X,Y)Z
=R(X,Y)Z+hi(X, Z)AN,Y — hi (Y, Z) An, X
+{(Vxhi)(Y, Z) - (Vyhi)(X, Z) + 7i(X)h;(Y, Z) — 75:(Y)hi (X, Z)} N, (29)

R(X,Y)N;
= -Vx(AnN,Y) + Vy(AN,X) + AN [X, Y] + 735(X) AN, Y — 745(Y) AN, X
+ {h;j(Y, AN, X) — hj(X, AN,Y) + 2d 735 (X, Y) + 7 (V) 75 (X)
— i (X) 75 (Y)} N; - (30)
Consider the Riemannian curvature of type (0, 4) of V and by using (29)-(30)
and the definition of curvature tensors, we derive the following structure equations
(31)—(34).

3(R(X,Y)PZ, PW)
= g(R(X, Y)PZ,PW) + h; (X, PZ)h} (Y, PW) — h; (Y, PZ) B} (X, PW), (31)

Qi

(R(X,Y)PZ, &)
9(R(X,Y)PZ, &)+ kX, PZ)h; (Y, &) - b} (Y, PZ) h; (X, &)
= (Vxhi) (Y, PZ) - (Vyhi) (X, PZ)
+75:(X)h; (Y, PZ) — 15 (Y) hi (X, PZ), (32)

g(R(X,Y)PZ, Ny)
Vx(ANY) - Vy(AnX) — AN[X, Y], PZ)

+ 7 (Y) hj (X, PZ) — 7; (X) B} (Y, PZ), (33)

N~~~

=g
9

(R(X, V)& ) |
G(R(X,Y)&, N;) + h (X, &) g (AN Y, N;) — hy (Y, &) 9 (AN, X, Nj)
= h; (X, ANJ.Y) — h; (Y, ANJ.X) —-2d7;(X,Y)
+ Tjk (X) Tk (Y) — Tjk (Y) Tki (X) (34)

Qi
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Denote by R* the curvature tensors of V*. Then by the same calculations of
(29)—(34), and using (22), (23) and (25), we obtain the following equations (35)-
(40).

R(X,Y)PZ
= R*(X,Y)PZ + h! (X, PZ) A,Y — h} (Y, PZ) Ae, X
+ {(Vxh))(Y, PZ) - (Vi hi)(X, PZ)
+ 15 (X, PZ)m;(Y) — RS (Y, PZ)m5(X)} &, (35)

R(X,Y)&
=-VX(A,Y)+ V;}(AgiX) + Agi[X, Y]+ Tji(Y)AéjX - Tji(X)AEJ.Y
+ {B1(Y, 4, X) — k3 (X, A,Y) - 2d 7 (X, ¥)
+ 7 (X) Toi (V) — i (X) 75 (Y)} €55 (36)

g(R(X,Y)PZ, PW)
= g(R*(X,Y) PZ,PW) + h}(X, PZ) hi(Y, PW) — h (Y, PZ) hi(X, PW), (37)

§(R(X,Y)PZ, Ny
= (Vxhi)(Y, PZ)) - (V¥ hi)(X, PZ)) + h}(X, PZ)7;(Y) — hi(Y, PZ)7;(X)
= g(Vx(ANY) - Vy(An,X) — An,[X, Y], PZ) + b (Y, PZ) g (AN, X, N;)
—h;j (X, PZ)g (ANJ.Y, N;) + h; (X, PZ)7i; (Y) — h;f (Y, PZ)1i; (X), (38)

9(R(X,Y)PZ, &)
= g(Vx(A4eY) — Vy (4 X) — A X, Y], PZ) + 75 (X) h; (Y, PZ)
-1 (Y)hj (X, PZ)
= (Vxh:) (Y, PZ) - (Vyhi) (X, PZ) + i (X, &) B (Y, PZ)
—h; (Y, &) h;-' (X, PZ) + 75 (X)h; (Y, PZ) — 75 (Y) h; (X, PZ), (39)

§(R(X,Y)&, N;)
= h;-‘ (Y, Ae, X) — h;f (X, AY) = 2d7:(X, Y) + T (X) Tri (V) — T (Y) Thi (X))
= h; (Y, ANJ,X) — hi (X, AN].Y) —2d7; (X, Y)+ he (Y, &) g (AN, X, Nj)

— b (X, &) 9 (ANY, N;) + 7 (X) 703 (Y) = 755 (Y) i (X). - (40)
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Now suppose that M is totally geodesic, then it follows from the Theorem 2.3
that h; and Ag, both vanish on M due to (25) and (26).

The type number t(u) of M at a point u is the rank of the shape operator Ay
at u. By the relation (19) it follows that ¢(u) < m — n. Using this in the equations
(29) and (31) we obtain the following theorem.

Theorem 2.4. Let (M, g, SM) be a coisotropic submanifold of (M, §) such that
t(u) = m—n. Then M is totally geodesic in M if and only if the induced connection
on M have the same curvature tensor as the Levi-Civita connection on M, i.e., we
have ‘

R(X,Y)Z = R(X,Y)Z, VX,Y, Ze(TM).
Proof. Suppose the equation in theorem is satisfied. Using the local expression of
the equation (31) by the local quasi-orthonormal field of frames {¢;, F,} we obtain

Ag Brg = Af; Bgs, Al Brs =0

where Ag and Brs are the local components of Ay, and h; respectively. This implies
Brs = 0 because of t{u) = m — n. Thus M is totally geodesic. O

3. ToTAaLLY UMBILICAL SUBMANIFOLDS

Let (M, g, SM) be a coisotropic submanifold of a semi-Riemannian manifold
(M, g). M is said to be totally umbilical in M if there is a smooth affine normal
vector field # € T'(tr(T'M)) on M, called the transversal curvature vector field of
M, such that

h(X,Y)=Hg(X,Y)
for all X, Y € I'(T'M) (see O’Neill [3]). By straightforward calculation and using
(11) it is easy to see that M is totally umbilical, if and only if, locally, on each
coordinate neighborhood U there exist smooth functions H; € F(tr(T'M)) such
that
hi(X, Y) = Hig (X, Y), (41)
forany X, Y € I'(TM). Above definition does not depend on the screen distribution
of M. On the other hand, from (25) and by using the fact SM is non-degenerate
distribution, we conclude that M is totally umbilical, if and only if, on each U/ there
exist H; such that
A, X = H;PX, VX € [(TM). (42)
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Note that in case M is totally umbilical, we have
h; (X, §J) = 0, A&{j =0, VXe€ F(TM). (43)
Using the equations (29) and (32) we have the following theorem.

Theorem 3.1. Let (M, g, SM) be a totally umbilical coisotropic submanifold of a
semi-Riemannian manifold of constant curvature (M (), g). Then, the functions
H; from (41) satisfy the following partial differential equations

¢ (H;) — H; H; + Hi 715 (&) = 0, (44)
and the curvature tensor R of M is given by
R(X,Y)Z
=c{g(Y,2)X -g(X, 2)Y } + Hi{g(Y, Z) AN X —g(X, Z) AN,Y },
for any X, Y € T'(TM). Moreover,
PX(H;) + Hypm; (PX) = 0. (45)

Proof. Taking account of (41) in (32), and using the fact that M is a space of

constant curvature obtain

{X (H:) — Hi Hjn; (X) + Hy 7 (X)} 9(Y, PZ)

—{Y (H;) — Hi Hjn; (Y) + Hi i (Y)} 9(X, PZ) =0, (46)
forany X, Y, Z € I'(TM). Take X =&, and Z =Y € I'(SM) such that g(Y, Y) #
0 on U and use (6) one obtains the first equation in theorem. Next, the second
equation in theorem follows from (29) taking into account that M is a space of
constant curvature and by using the first equation in theorem. Finally, take X =
PX and Y = PY in (46) and by using (6) and taking account that SM is non-

degenerate one obtain
(PX (H:) + Hymi (PX)} PY = {PY (H;) + Hymi (PY)} PX.
Now suppose there exists a vector field X, € I'(TM) such that
PX,(H;)+ Hym; (PX,) # 0 at each point u € M.

Then from the last equation it follow that all vectors from the fiber (SM), are
collinear with (PX,),. This is a contradiction as dim (SM), = m — n. Hence the
last equation in theorem is true at any point of &/, which completes the proof. O



GEOMETRY OF COISOTROPIC SUBMANIFOLDS 43

From (34) and the fact that M is a space of constant curvature we obtain

H;{g(X, AN;Y) - g (Y, AN;X)}
= 2dTj; (X,Y) - Tik (X) ki (V) + T (X) Tjk (Y).

In case H; # 0 on U we say that M is proper totally umbilical. From the last

equation we obtain the following theorem.

Theorem 3.2. Let (M, g, SM) be a proper totally umbilical coisotropic submanifold
of a semi-Riemannian manifold of constant curvature (M (¢), ). Then the screen
distribution SM 1is integrable, if and only if, each 1-forms 7;; induced by SM satisfy
d(Tx(7i;)) = 0, where Tr(7;;) is the trace of the matriz (7;5).

Next, the screen distribution SM is said to be totally umbilical in M if there is a
smooth vector field X € I'(RadTM) on M, such that, h* (X, PY) = Kg (X, PY)
for all X,Y € I'(TM). By straightforward calculation it is easy to see that SM
is totally umbilical, if and only if, on any coordinate neighborhood Y C M, there
exists a smooth functions K; such that

h:(Xa PY)ZKig(X, PY) (47)

for any X,Y € I'(TM). It follows that h} are symmetric on I'(SM) and hence
according to Theorem 2.2, the screen space SM is integrable. In case K; = 0 (resp.

K; # 0) on U we say that SM is totally geodesic (resp. proper totally umbilical ).
From (19), (24) and (47) we obtain

P(An,X) = K; PX, h! (&, PX)=0 (48)
for any X € I'(TM). Note that in case SM is totally umbilical, we have from (7)
and (48)
AN, X = K; PX 4 n; (AN, X)§;, v (49)
and from (18) we have

i (AN, X) = -1 (AN, X).

Lemma 3.1. Let (M, g, SM) be a coisotropic submanifold of a semi-Riemannian
manifold (M (€), g) of constant curvature &, such that the screen distribution SM is
totally umbilical. If M is also totally umbilical, then the mean curvature vectors K;
of SM are a solution of the following partial differential equations

X(Kl) —Kj Tij(X) - K; Hj nj(X) - Hj nj(AN..X) - ET],‘(X) = 0. (50)
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Proof. Taking account of (47) and (49) into (33) and (38), and using (6), (25), (28)
and the fact that M is a space of constant curvature we obtain

{X(K:) - Kj7i5(X) — K Hyni(X) — Hjn;(AnX) — em(X)} g (Y, PU)
={Y(K:) - K;7;(Y) — Ki H;n;(Y) — Hjni(An,Y) — em(Y)} g (X, PU).
Thus by the method of Theorem 3.1 we have the equation (50). O

From the equations in Lemma 3.1 we have the following theorem.

Theorem 3.3. Let (M, g, SM) be a proper totally umbilical coisotropic submanifold
of a semi-Riemannian manifold (M (€), §) of constant curvature €. If the screen
distribution SM is totally geodesic, then ¢ = 0, i.e., the ambient semi-Riemannian

manifold M is semi-Euclidean space.

Corollary 3.4. Under the hypothesis of Lemma 3.1, the induced connection V on
M is metric connection if and only if the mean curvature vectors K; of SM are a

solution of the following partial differential equations

X(K;i) — K;j7;(X) —emi(X) = 0.

4. INDUCED RiIccl TENSOR

From (12) it follows that h; are symmetric bilinear forms on I'(T'M) and they do
not depend on the screen distribution. In fact, we have

g(VxY, &) = hi(X,Y),
for any X, Y € I'(TM). However, we note that h; and 7;; depend on the section
& € T'(RadTM). Indeed, in case we take {§ = oy;§;, where a;; are smooth
functions with A = det (ay;) # 0. It follows that N} = % A;; Nj, where A;; is the
ij-cofactor of the determinant of A. Hence by straightforward calculation we obtain

B} = a;j hj and 7j; are denoted by affine combinations of 7;; with coefficients aj,
A;; and X (A;ij). Moreover, we have

Tr(r;) (X) = Tr(7;) (X) + X (log A),
for any X € I'(TM). Thus we obtain the following theorem.

Theorem 4.1. Let (M, g, SM) be a coisotropic submanifold of a semi-Riemannian
manifold (M, g). Suppose Tr(r;) and Tr(7;) are 1-forms on U with respect to &
and &} respectively. Then d (Tr(7};)) = d(Tx(rij)) on U.
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We find the local expression of structure equations of a coisotropic submanifold.
Consider the frames field {F, -+, Fp—n, €1, n, N1,-++, Ny} on M. In the sequel

we use the range of indices:
a,B,v,--€4{1,2,---m—-n} A B,C,D,---€{1,2,---,m}.
Denote by {X 4} the frame fields {Fy,&;} on M, i.e.,

X1:F11"', Xm—-n= m-n; Xm—n-H:él,"',Xm = §n
Then consider the local components of curvature tensors R and R as follows:

Rapep = §(R(Xp, X¢)XB, X4), Rapcp = g(R(Xp, X¢)XB, Xa),
Ripep = 3(R(Xp, X¢)XB, Ni), Ripcp = §(R(Xp, Xc)XB, Ni),
Rijcp = §(R(Xp, Xc)Nj, Ny), Rijcp = §(R(Xp, Xc)Nj, N;).

L~])

We are now concerned with local expression of Ricci-tensor of a coisotropic sub-

manifold M of an (m + n)-dimensional semi-Riemannian manifold (M, g) of. By
using the frames field on M we obtain the following local expression for the Ricci

tensor
Ric(X,Y) = g*° g(R(X, F.)Y, F) + § (R(X, &)Y, N;).

By using the symmetries of curvature tensor and the first Bianchi identity and taking
into account (31) and (40) we obtain

Ric(X,Y) — Ric(Y, X)
= g% (R} (X, Xa) hi(Y, Xg) — hi(X, Xa) B} (Y, Xg)}
+ hi (Y, A, X) — hi (X, Ag,Y) — 2d(Tr(r5)) (X, ).
Replacing X and Y by X 4 and X respectively and by using (24) and (25) we have
Rusp — Rpa = 2d(Tx(7;)) (Xa, XB)

where we put Rap = Ric(Xp, X4). Therefore, by using Theorem 4.1 we conclude

Theorem 4.2. Let (M, g, SM) be a coisotropic submanifold of a semi-Riemannian
manifold (M, §). Then the Ricci tensor of the induced connection V on M is sym-
metric if and only if each 1-form Tr(7;;) induced by SM is closed, i.e., d (Tr(;;)) = 0
onanyUd C M.

From the Theorems 3.2 and 4.2 we obtain the following theorem.



46 DAE Ho Jin

Theorem 4.3. Let (M, g, SM) be a proper totally umbilical coisotropic submanifold
of a semi-Riemannian manifold of constant curvature (M (¢), g). The screen distri-
bution SM 1is integrable, if and only if, the Ricci tensor of the induced connection

V on M 1is symmetric.

Corollary 4.4. Under the hypothesis of Theorem 4.3, if the screen distribution
SM is totally umbilical, then the Ricci tensor of the induced connection V on M 1is

symmetric.

REFERENCES

1. Duggal, K. L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds
and Applications, Mathematics and its Applications, 364. Kluwer Acad. Publishers, Dor-
drecht, 1996. MR 97e:53121

2. Duggal, K. L. and Jin, D. H.: Totally Umbilical Lightlike Submanifolds. To appear in
Geom. Dedicata.

3. O'Neill, B.: Semi-Riemannian Geometry, With Applications to Relativity, Pure and
Applied Mathematics, 103. Academic Press, New York, 1983. MR 85f:53002

DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY, GYEONGJU, GYEONGBUK 780-714,
KOREA
E-mail address: jindh@dongguk.ac.kr



