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THE GLOBAL EXISTENCE OF SOLUTIONS OF A
REACTION-DIFFUSION EQUATION

HyukJIN KWEAN

ABSTRACT. We establish the global existence of nonnegative solutions to some
reaction-diffusion equation for exponential nonlinearity for small initial data.

1. INTRODUCTION

We consider a reaction diffusion system

g—? ~di1Au+ kugp(v) =0 onRT x Q
(1)
%:——dgAv—uqS(v):O on Rt x

where Q is an open bounded domain in R™ of class C?, d; (j = 1,2) and k are positive
constants, and ¢ is a nonnegative function of class C;(R™). We also consider the

homogeneous boundary conditions

a1@+(1—a1)u:0 on Rt x T’
@) on

a28—2+(1—a2)v=0 on Rt xT
where I’ = 89, and a;(z) and ax(x) are nonnegative functions of class C*(T") with
a; (:II) <1.

We study the question of the existence of global solutions of problem (1)-(2) in
the class C(Q) with initial data
(3) u(0,z) = ug, v(0,z) =1wp

where wup, vg are in L*°(Q) and ug, vo > 0. This problem was initially raised
by Martin and has been studied successively by many authors (cf. Alikakor [1],
Barabanova [2], Conway and Smoller [5], Haraux and Youkana (7], Masuda (8],
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Youkana [9, Chapitre 3]) for various types of nonlinear ¢(v). Recently, Barabanova

[2] proved the existence of global solutions for the nonlinear function
o(v) =€, a>0,

in any dimension n with arbitrary vy and ug satisfying
8dyds
an(dy — d2)?’
If |dy —ds| is small enough, the equations (1)-(2) with (3) have the global solutions

(4) |luoll Lo () <

for relatively large initial data. However, if an or |d; — d»| is large then it is true
only for small data.

In this paper we find suitable range for vy = %; and k£ > 0 for the same result
with any initial data |jug)lec < 1.

2. STATEMENT AND PROOF OF THE MAIN RESULT

Throughout the paper we denote by || - ||, the norm in LP(Q2), 1 < p < co. The
study of local existence and uniqueness of solutions to the initial-boundary value
problem for (1)-(2) with (3) in the framework of C(Q) or LP(R) is classical. In
particular, for nonnegative ug and vg, there exists a local nonnegative solution (u, v)
of class C() of (1)-(2) with (3) on (0, T'), where T is the eventual blowing-up time
in L*(Q) (cf. Cazenave and Haraux [3, 4]). Also it is evident that u satisfies the
maximum principle, i.e., ||u(t)|lc < |luo]lec- Finally we note that as a consequence
of the results of [6], to prove that the solutions of (1)—(2) with (3) and (4) are global,
it is sufficient to derive a uniform estimate of ||u¢(u)|[, on (0,7T) for some p > 7.
Since ||u(t)||oo is bounded by ||uo}|c, it is, therefore, good enough to obtain a bound
in ||¢(u)||p on (0,T) which does not depend on ¢.

The main result can be stated as follows.

Theorem 1. Assume that ¢(v) = e* and k > an. Then if v satisfies 3 — 2/2 <
v < 3 + 2v/2 the solutions of (1)-(2) with (3) for nonnegative initial data ug, vo in
L (Q) satisfying ||uo||eo < 1 are global and uniformly bounded on (0, c0) x .

To prove this theorem we need the following proposition.

Proposition 2. Let (u,v) be a solution of (1)—(2) with (3) for arbitrary vo and ug
satisfying |luco|| < 1. Let
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Then, for p satisfying n > p > 5, the integral
(5) | stwerdo
Q
is nonincreasing on (0,T).

Proof. By a standard argument, we get the following inequality for any solution
(u,v) of (1)-(2) with (3).

d 1
— apv
n (/ 1 € ‘.,.dm)

2 ap a?p?
< apv { <2 2 . 2
< /ﬂe ((1_u)3d1|Vu| + (1__u)2(d1+d2)Vu Vo + 1_ud2|V'v| dz

+/Qe°‘p”u¢(v) (1oipu T _{cu)2) dz.

The integrand of the first integral is nonnegative definite if

a2p2

a2p?
m(dl + d2)2 < 8d1d2 P

(1-w)*

and actually it is nonnegative definite if v = gl satisfies
2

3-2v2<y<3+2v2.
Also since
op  k < —a(n —p) — apu
l—u  (1-—u)? (1~ u)?
we obtain the desired result. O

<0,

Now using this result, we prove the main theorem.

Proof of Theorem 1. Let p be as in Proposition 2. The boundedness of ||ugl|co
implies :
llug(v)llp < [luolloolB()llp-

Since g(u) > 1, we have

(Il = [ 160)Pdo < [ eda< [ stwre.

By Proposition 2, we obtain n

(”¢(U)Hp)pﬁ/ng(u)e"""’° dz < |Q|g(|]u0||°°)eap!lvolloo.



50 HyukJin KWEAN

Hence u¢(v) is uniformly bounded in LP(?) for all ¢ € [0, T]. By the results of Haraux
and Kirane [6], we conclude that the solutions of the initial-boundary problem (1)-
(2) with (3) are global and uniformly bounded on (0, ) x €. a

3. BEHAVIOR AS £ — o0

Masuda (8], for nonnegative global solution (u,v) of (1)-(2) with (3), has proved
that there exist two nonnegative constants u*, v* such that

llu —w*|| =0, |lv—2*|| =0,

and u*@(v*) = 0. It is obvious that u* = v* = 0 when both u and v have non-
Neumann boundary conditions. Therefore we have the following asymptotic behav-
ior of solutions with ¢(v) = e*.

Theorem 3. Let (u,v) be any nonnegative global solution of (1)—(2) with (3) for
a1, ay # 1. Let )\; be the first eigenvalue of —A in Q with boundary condition (2)
defined by a;, 1 = 1, 2. Then there exist constants K;, Ko, K3 > 0 such that

(6) lu(®)lleo < Kie~Caditht,
(7) [o(D)lloo < Kaemmintadithdada}t if X1dy + k # Nada,
(8) l[o(E)|loo < (Ko + Kst)e A2d2t if Ady + k = dads.
Proof. The solution of the equation
9) %—dlAu—i-ku:O
with the boundary (2) with initial data (3) is a supersolution for
%% —diAu+ ku¢®™ =0
with the same boundary condition and initial data. It is known (cf. Cazenave and

Haraux [3, 4]) that the solution of the linear equation (9) has asymptotic e~ (MdiFk)t

so that we have proven (6). Also, using the boundedness of ||v(t)||cc and applying
the expression of the solution of the system (1) in terms of the semigroup by % —d2A,
as in Haraux and Kirane [6], we obtain the inequality

i
[o(8)]leo < Mie~22%t 4 Mpe=r2%2t +/ e(—adi+R)+Aada)a g
0

where My, M> > 0. Then computing this integral depending on the relation between
A1d; +k and A2da, we obtain the desired results (7) and (8). We refer Barabanova. [2]

for more detailed proof. d
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Remark. The study related to this problem has been made in the point of the growth

rate of the nonlinear function ¢(v). However, when ¢(v) = e* then some restrictions

on ug appear. Youkana [9] proved this case in small dimensions n = 1 and n = 2.

Barabanova [2] extended this result for any dimension n. For his result, he also used

the semigroup method and Lyapunov function techniques. Moreover, he observed

that the problem is still open when ¢(v) has faster growth than e*” or when the

initial data ug > 0 in L*° is given arbitrarily.
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